$$
\begin{aligned}
& P_{a}=\dot{m}\left(\omega+\frac{v_{2}}{2}\right) \\
& P_{\sigma} P=(\dot{m}-\Delta \dot{m})\left(\omega+\frac{v_{2}^{2}}{2}\right) \\
& \quad \Delta \dot{m}=\text { leakage flow }
\end{aligned}
$$

$$
P_{n}=\text { Net Power }
$$

3% skinfriction

$$
=P-\text { hydraulic losses }
$$ 977 form drag

$$
P_{r}=\text { Rotor Power }
$$

$$
=P_{n}-\text { Exit losses }
$$

$$
P_{s}=\text { Power of shrift }
$$

$$
=P_{r}-\text { Mechanical }
$$

$\eta_{v}=$ Volumetric efficiency

$$
=\frac{(\dot{m}-\Delta \dot{m})\left(\omega+\frac{v_{2}^{2}}{2}\right)}{\dot{m}\left(w+\frac{v_{2}^{2}}{2}\right)}=\frac{p}{p_{a}}=\frac{\dot{m}-\Delta \dot{m}}{\dot{m}}
$$

$\eta_{h}=$ Hychaulic efficiency

$$
=\frac{P_{r}}{P}=\frac{P_{r}}{P_{n}} \cdot \frac{P_{n}}{P}=\epsilon \cdot \frac{P_{n}}{P}
$$

$\epsilon=$ ulilisation factor
$\eta_{m}=$ Mechanical efficiency

$$
=\frac{P_{s}}{P_{r}} .
$$

Overall efficiency

$$
\begin{aligned}
\eta_{0} & =\frac{P_{s}}{P_{a}}=\frac{P_{s}}{P_{r}} \cdot \frac{P_{r}}{P_{b}} \cdot \frac{P_{a}}{P_{a}} \\
& =\eta_{m} \times \eta_{b} \times \eta_{v}
\end{aligned}
$$

Ex A flow rate of $3 \mathrm{~m}^{3} / \mathrm{s}$ of water is available at a beight of 110 m at a project site. Due to lasses in the supply line, the herd available at the inlet to the powerhouse is estimated to be only 101 m , of water The leakage losses in the powerhouse are negligible. Mechanical loses account for 150 kW . Frictional losses in the rotor blades may be taken as 250 kwr . The exit velocity of water from the turbine is $4.5 \mathrm{~m} / \mathrm{s}$. Calculate the hydraulic, mechanical and overall efficiency of the plant. Take $p=1000 \mathrm{~kg} / \mathrm{m}^{3}, g=9.81 \mathrm{~m} / \mathrm{s}^{2}$.

$$
\begin{aligned}
& Q=3 \mathrm{~m}^{3} / \mathrm{s} \quad H=101 \mathrm{~m} \quad P_{a}=p Q g H \\
& P_{a}=P \\
& =1000 \times 3 \times 9.81 \times 101 \mathrm{~W} \\
& =2972.4 \mathrm{~kW} \\
& P_{n}=P \text {-hydraulic losses } \\
& =(2972.4-250) \mathrm{kW} \quad \frac{1}{2} \dot{\mathrm{~m}} \mathrm{v}_{2}^{2} \\
& =2722.4 \mathrm{~kW} \\
& \frac{1}{2} \times 1000 \times 3 \times\left(4.5^{2}\right) / 1000 \mathrm{kw} \\
& P_{r}=P_{n}-\frac{1}{2} \dot{m} V_{2}^{2} \\
& =2696 \mathrm{kw} \\
& P_{s}=P_{r} \text {-mechanical cores } \\
& =(2696-150) \mathrm{RW}=2546 \mathrm{~kW} \\
& \eta_{u}=100 \% \\
& n_{h}=\frac{P_{2}}{P}=\frac{2696}{2972.4}=90.6 \\
& \begin{array}{l}
\eta_{m}=\frac{p_{s}}{p_{r}}=\frac{2546}{2696}=94.4 \\
\eta_{0}=0.85
\end{array} \\
& \eta_{0}=0.85
\end{aligned}
$$

$$
\begin{aligned}
-\dot{w} & =\dot{m}\left(\frac{p_{2}}{p}+\frac{V_{2}^{2}}{2}+g z_{2}\right)-\dot{m}\left(\frac{p_{1}}{p}+\frac{V_{1}^{2}}{2}+g z_{1}\right) \\
|-\omega| & =\left(\frac{p_{2}}{\rho}+\frac{V_{2}^{2}}{2}+g z_{2}\right)-\left(\frac{p_{1}}{p}+\frac{V_{1}^{2}}{2}+g z_{1}\right) \\
P & =\rho Q g H \\
\omega & =g H
\end{aligned}
$$

beaing lons on Mechanical los.

$$
\begin{aligned}
\eta_{0}=\frac{P}{P_{s}} & =\frac{P}{P_{n}} \times \frac{P_{n}}{P_{r}} \times \frac{P_{r}}{P_{s}} \\
& =\eta_{h} \times \eta_{v} \times \eta_{m}
\end{aligned}
$$

Ex Water is required to be pumped to the overhead tank of a building of vertical height 75 m from the sump level. The total equivalent length of the delivery pipe is 80 m . The pipe diameter is 50 mm , its friction factor is 0.024 . Determine the power required to pump water at a rate of 10 lps . The mechanical lorre of the pump are equal to 0.2 kW . The hydraulic efficiency of the pump is 93.6%. Assume leakage and return flow losses as 0.2 lps . Also find $\eta_{m}, \chi_{0} \eta_{u}$ and η_{0}. Take $\rho=1000 \mathrm{Rg} / \mathrm{m}^{3}$.

$$
g=9.81 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
h_{l}=f \cdot \frac{l_{e}}{d} \cdot \frac{v_{2}^{2}}{2 g}
$$

v_{2}

