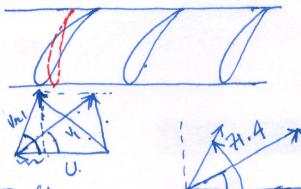

7/11/17

= constant

rvo


1)

Draft Tube

K0

chipb

Kaplan Turbine

P= 2600 kW

H = 40mη,=0.86 N=600 rpm $\phi = 1.25$

 $\frac{N\sqrt{P}}{p^{\frac{1}{2}}(g_{H})^{\frac{5}{4}}} P = W$ NS = Engineering specific speed. $= \frac{N\sqrt{P}}{15/4} = \frac{600\sqrt{2600}}{40^{5/4}}$

= 304.

 $2600 \times 10^3 = 10^3 \times 0.81 \times 40 \times 0.86$ $Q = 7.7 \text{ m}^3/2$ Ps = P×g×g×H×70 $\varphi = \frac{U_{\star}}{V_{I}} = 1.25$ $V_1 = \sqrt{2gH} = 28 m/8$

U= 1.25 ×28 =35 m/8

 $\frac{U_{h}}{D_{f}}=0.6$ $D_{t} = 1.11 \text{ m}$ $U = \frac{\pi D_{\rm e} N}{60} = 35$ $D_{R} = 0.666 \, \text{M}_{D}$

$$V_{n_{1}} = V_{n_{2}} = V_{n} = \frac{g}{T(D_{2}^{2} - D_{4}^{2})} = \frac{7.7}{T(D_{2}^{2} - D_{4}^{2})} = \frac{7.7}{T(D_{1}^{2} - 0.666^{2})} = \frac{12.4 \text{ M/s}}{1.11^{2} - 0.666^{2}}$$

$$\eta_{s} = 0.9 \qquad (U_{1}V_{s_{1}} = gH\eta_{s_{1}} = V_{s_{1}} = 10.1 \text{ M/s}$$

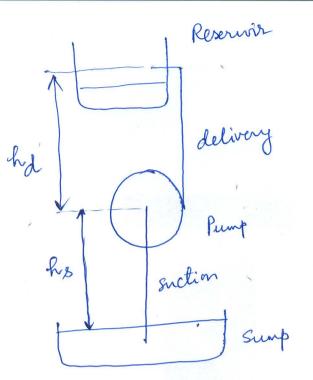
$$\beta_{1} = \tan^{-1} \frac{V_{n}}{U - V_{s_{1}}} = 27.7^{\circ}. \qquad \beta_{2} = \tan^{-1} \frac{V_{n}}{U} = \tan^{-1} \frac{12.4}{35} = 19.5$$

Contd.

Free Vortex Dengo

PXVt = contant $(U_i V_{ti})_{\mu} = (U_i V_{ti})_{t}$

P2 BI Tip. 26.6. 19.5 hule 71,4


B, and B2 at hub $V_{t_1} = \frac{35 \times 10.1}{21}$

$$= 16.9$$

 $\beta_1 = \tan^{-1} \frac{12.4}{21 - 16.9} = 71.4^{\circ}$

 $U_{l} = \frac{\pi \times 0.666 \times 600}{60} \, \frac{1}{7} \times 0.666 \times 500}{60}$

= 21.0

2

 $g(-w) = (p_{+}(\frac{v_{1}}{2}+g_{2}) - (p_{+}\frac{v_{1}}{2}+g_{2}),$ $H_{m} = h_{s} + h_{s}f + h_{d} + h_{d}f + \frac{V_{2}^{2}}{2g}$ $\eta_{\rm h} = \frac{H_{\rm m}}{H_{\rm h}} = \frac{H_{\rm m}}{\frac{U_{\rm h} v_{\rm u_{\rm h}}}{q}}$

רונין ד

304 Turbomachines				
Chapter 7		8. Inacentrifusal pump, the width of the impeller	widthoftheimpeller	= 29° C, and barometer reading = 10.01 m of
Exercises			outer diameter of 45	water. Calculate the following: (a) Manometric
The diameters of the impeller of a centrifugal	is required. The overall efficiency is estimated	cm. The thickness of blades in the impeller	ades in the impeller	head, (b) head developed in the impeller, (c) nower drawn by the minm, and (d) NPSH.
pump are 20 cm and 40 cm at the infet	as 80%. Calculate the power output of the	The manometric efficiency is 82%, and the		10. A centrifugal pump delivers 0.04 m ³ of
and outlet, respectively. The blades of the	motor driving the pump, if $f = 0.009$, and	overall efficiency is 78%. The whirl velocity		
impeller are bent backward at an angle	the specific speed of the pump if the speed is	at the exit is 24 m/s. The speed is 1440 rpm.	e speed is 1440 rpm.	of 35 m. The suction and delivery pipes
of 40° at the outlet. The radial velocity		Calculate the following: (a) Head generated,	(a) Head generated,	are of equal diameter of 10 cm, and their
of flow is constant at 6.8 m/s. Ihe water	5. The diameters of the impelier of a centritugal	(b) flow rate, (c) exit vane angle, and (d)	vane angle, and (d)	total length inclusive of effects of pipe fit-
enters the impeller in the radial direc-	pump are 0.4 and 1.0 m at the inlet and outlet,	power required to drive the pump.	the pump.	tings is 55 m. The pipe friction coefficient f
tion. The total head to overcome is 61.5 m	respectively. The speed is 300 rpm. The outlet	9. The following observations were recorded	ions were recorded	is 0.006. In the impeller, the blade width at
of water. The speed is 1440 rpm. Calculate	angle of the blades is 30°. The radial compo-	during a trial in a centrifugal pump installation.	gal pump installation.	the outlet is 1/10th of the diameter, and the
the following: (a) Blade angle at the inlet,	nent of velocity is constant and is equal to 6.5	Static suction head = 5.3 m. static delivery head	m. static delivery head	thickness of blades accounts for 8% of loss
(b) angle and magnitude of outlet velocity,	m/s. The head across the impeller is 6 m, and	= 26 m frictional loss of head in suction nine	head in suction nine	of flow area. The blades are bent backward,
(c) specific work. (d) manometric efficiency,	the flow rate of water is 1 m^3/s . Calculate (a)	- 1 m functional loss of hard in delivery nine	had in delivery nine	making an angle of 65° with the wheel tan-
(c) specific many (c) manufacture the numb if	hydraulic efficiency. (b) power required to drive	= 1 m, incuonal loss of	licau III ucuvely pipe	IIIaking an angle of of with the wreet tan
the width of the impeller passage at the outlet	the nump. (c) Also determine the minimum	= 0.3 m, diameter of suction pipe -10 cm.	76 f	gent. The hydraune childeney is 00 /0 and
inc within of the margin passage at the other	etarting cheed	diameter of delivery pipe = /.) cm, now rate	c = /.5 cm, now rate	the specific speed is Ju. Calculate the full
L CIT and the overall efficiency is 00 %.	The hard manufact of the outlet flance of	= $0.045 \text{ m}^3/\text{s}$, manometric efficiency = 82% ,	ric ethciency = 82% ,	lowing: (a) Manometric head, (b) speed, and
The blades of the impeller of a centritugal		overall efficiency = 76% , room temperature	o, room temperature	(c) impeller diameter.
pump are bent backward at 55° to the tangent	a centritugal pump is 20 m 01 water above			
of the wheel rim. Ihe outer diameter of the	that at the inlet. Ine now rate is 0.09 m ⁷ /s.	PROJECT-ORIENTED QUESTIONS	UESTIONS	ON WEB SOLUTIONS AVAILABLE
impeller is 30 cm and the speed is 980 rpm.	The impeller diameters are 20 and 40 cm.			
The measured head across the inlet and outlet	The blades are bent backward with an angle	d training llours is is in the	ing three ports. Dart	Part (c). Make an attempt to reinforce volir
of the pump is 15 m. Find (a) loss of head in	of 40° at the outlet. The width of the impel-	1. This is a small project naving unce parts: Fart	iving unree parts: rart	rait (U): Make an accurate to remove your
the impeller (b) hydraulic efficiency. (c) Also	ler at the outlet is 20 mm. The losses in the	(a), Part (b) and Part (c).		(L)
calculate the power required to drive the pump	impeller are 1.5 m, and the gain in the diffuser	Fart (a): Enlist the design parameters and per-	n parameters and per-	D), WILLIEVEL PUSSIBLE.
if the flow rate is 15 kg/s. The entry of water is	blades is 3.5 m. The entry of water is radial.	formance parameters of a centrifugal pump.	a centritugal pump.	2. Iwo pumps are required to be designed: one to f_1
radial and the flow velocity remains constant at	The flow velocity remains constant in the	Explain, to the extent possible, the effects of	ossible, the effects of	a fire hose and another for pumping water to
3.5 m/s.	impeller. Calculate the following: (a) Head at	variation of such parameters (e.g., in the impel-	ers (e.g., in the impel-	a town water supply scheme in a remote place
In a performance test of a centrifugal pump,	the outlet of the impeller, (b) head developed	ler, the width of the blade, B2, affects the flow	e, B2, affects the flow	where electrical power supply is snapped.
it was found that the maximum efficiency	by the impeller, (c) hydraulic or manometric	rate; higher the width, higher is the flow rate;	igher is the flow rate;	both require power supply from mobile unus
occurred when the flow rate was 45 lps, at a	efficiency, (d) speed, and (e) angle of the dif-	and hence higher power; also, it does not affect	also, it does not affect	and therefore the power of the prime mover is
head of 30 m, while running at 1440 rpm. The	fuser blades.	the head created,).		limited to an upper limit of ou k.w. Luscuss the
impeller diameter of the pump was 28 cm.	7. A pump is required to be designed for a flow	Part (b): Prepare a table which shows the	ole which shows the	parameters which distinguish the design of the
Calculate the number of similar stages and the	of 0.1 m ³ /s at a manometric head of 60 m.	values of parameters [as in Part (a) above] in	in Part (a) above] in	two pumps. Substantiate your discussion with
diameter of the impeller of a multi-stage unit	A manometric efficiency of 85% and a	the solved examples and the exercise problems	the exercise problems	some numerical values that you might use in
to deliver 85 lns against a head of 130 m at a	mechanical efficiency of 95% can be assumed.	of this chapter. If some values are not available	alues are not available	the design.
spred of 960 rpm.	The effect of the vane thickness is to reduce the	in the problems (either as part of data or part	as part of data or part	
The vertical height of the outlet of the delivery	flow area by 10%. The proposed speed is 1500	of answers), calculate them wherever possible.	em wherever possible.	
pipe of a centrifugal pump is 22 m, above the	rpm. The velocity of flow remains constant at	-		
centerline of the pump. The length of the	2.5 m/s and the blade angle at the outlet is	Answers		
delivery pipe is 32 m, including the effective	55°. If a three-stage unit is preferred, calculate	Multiple-Choice Ouestions	ons	
lengths of all the pipe fittings, and its diam-	the following: (a) Impeller diameter, (b) width			
eter is 7.5 cm. The suction side head and the		1. (c)		3. (b)
losses are negligible. A flow rate of 1500 lps m	required to drive the pump.	2. (b)		4. (d)

the fect [la-lla-lla-les? ow ow of of

10) 11) 11) 12) 12)

Centrifugal Pumps 305

8

-

$$\begin{aligned} D_{1} &= 2.09, \ D_{2} &= 40 \ \text{cm} \\ &|\beta_{2} &= 40^{\circ} \\ &V_{n_{1}} &= V_{n_{2}} &= 6.8 \ \text{mys} \\ &H &= 61.5 \ \text{m} \\ &N &= 1440 \ \text{supm} \\ U_{1} &= \frac{\pi D_{1}N}{60} &= \frac{\pi \times 0.2 \times 1440}{60} \ \text{mys} \\ &= 15 \ \text{m/s} \\ U_{2} &= 2 \times U_{1} &= 30 \ \text{mys} \\ &t_{am}\beta_{1} &= \frac{V_{n_{1}}}{U_{1}} &= \frac{6.8}{15} \\ &\beta_{1} &= 24.4^{\circ} \\ Vu_{2} &= U_{2} - Vn_{2} \ \text{cot}\beta_{2} \\ &= 30 - 6.8 \times \text{cot} + 10 \\ &= 21.9 \ \text{m/s} \\ t_{am}\beta_{2} &= \frac{Vn_{2}}{Vu_{2}} &= \frac{6.8}{21.9} = 0.31 \ \text{m}\beta_{2} = 17.2^{\circ} \\ &\frac{Vn_{2}}{V_{2}} &= \frac{6.8}{21.9} = 0.31 \ \text{m}\beta_{2} = 17.2^{\circ} \\ &\frac{Vn_{2}}{V_{2}} &= \frac{Nn_{2}}{2} \ \frac{Nn_{2}}{V_{2}} &= \frac{6.8}{21.9} = 23 \ \text{m/s} \\ &U_{2} &= 30 \times 21.9 \\ &= 657 \ \text{m} \ \text{m}^{5}/\text{hg} \\ &\eta_{m} = \eta_{A} &= \frac{61.5}{657/9.81} = 91.87. \\ &g &= \pi D_{2} \ b_{2} \ \text{vm} \end{aligned}$$

$$8 = \pi D_2 b_2 x v_{m_2}$$

= $\pi x 0.4 \times 0.02 \times 6.8 \text{ m}^3/\text{s}$
= $0.171 \text{ m}^3/\text{s}$
$$P = P 8 g H / \eta_0$$

= $1000 \times 0.171 \times 9.81 \times 61.5 / 0.88$
117.2 kW

$$\frac{2}{4\mu p7} Pm \qquad \beta_{2} = 35^{\circ}$$

$$D_{2} = 30 \text{ cm}$$

$$N = 980 \text{ Apm}$$

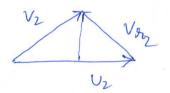
$$H_{m} = 15 \text{ m}$$

$$U_{2} = \frac{\pi D_{2}N}{60} = \frac{\pi \times 0.3 \times 980}{60} \text{ Ms}$$

$$= 15.4 \text{ m/s}$$

$$V_{n_{2}} = 3.5 \text{ m/s}$$

$$V_{n_{2}} = 3.5 \text{ m/s}$$


$$V_{n_{2}} = 42 - V_{n_{2}} \text{ at } \beta_{2}$$

$$= 15.4 - 3.5 \times 6 \text{ at } 35$$

$$= 10.4 \text{ m/s}$$

$$H_{n} = \frac{U_{2}Vu_{2}}{g} = \frac{15.4 \times 10.4}{9.81} = 16.3 \text{ m}.$$
(a) Loss Q-Local = 16.3 - 15 = 1.3 \text{ m}
(b) $\eta_{L} = \frac{15}{16.3} = 92.4$
(c) Power = mgH_{n}
$$= 15 \times 9.81 \times 16.3 \text{ M}$$

$$= 2.4 \text{ km}$$

Performance test of the pump gaves

$$g = 45 \ \text{lps} = 0.045 \ \text{m}^3/\text{s}$$

 $H = 30 \ \text{m}$
 $N = 1440 \ \text{pm}$
 $D = 28 \ \text{cm}$
 $N_S = \frac{N J Q}{H^{3/4}} = \frac{1440 \times \sqrt{0.045}}{30^{3/4}} = 23.83$
Rumps one in series, specific speed same.
 $N = 960 \ \text{spm}, \ Q = 85 \ \text{lps} = 0.085 \ \text{m}^3/\text{s}$
 $N_S = 23.83 = \frac{960 \sqrt{0.085}}{H_S^{3/4}} = \frac{960 \sqrt{0.085}}{23.83} = 11.74 \ \text{m}.$
 $N_S = 23.83 = \frac{960 \sqrt{0.085}}{H_S^{3/4}} = \frac{130}{26.68} = 4.87 \Rightarrow 5$

Diameter of new pump $\frac{8!}{N_1D_13} = \frac{8_2}{N_2D_23}$ $D_2^3 = D_1^3 \times \frac{8_2}{8_1} \times \frac{N_1}{N_2}$ $= 28^3 \times \frac{85}{45} \times \frac{1440}{960}$ = 62197.3

 $D_2 = 39.62$ cm

dup 7 Pm

Contraction of the

=
$$25.08 \text{ m} + \sqrt{a}/hg$$

 $H_m = h_d + h_{fd} = 22 + 25.08 + \frac{5.66^2}{2 \times 9.81} = 48.7 \text{ m}$
Power required, $P = \frac{P \otimes g H}{1000 \times 9.8} \text{ km}$

specific speed of pump $N_{S} = \frac{N \sqrt{8}}{H^{3/4}} = \frac{1440 \times \sqrt{25 \times 15^{3}}}{48.7^{3/4}}$

= 12:35