4. $D_{m}=50 \mathrm{~cm}$.

$$
\begin{aligned}
& N=10000 \mathrm{rpm} \text {. } \\
& V_{N_{1}}=380 \mathrm{~m} / \mathrm{s}, \alpha_{1}^{\alpha_{1}}=25^{\circ} \\
& \beta_{2}=35^{\circ} \text {. } \\
& U=\frac{\pi D_{m} 10000}{60 \times 100}=261.8 \mathrm{~m} / \mathrm{s} . \\
& v_{v_{y}}=v_{1} \cos \alpha_{y}=380 \times \cos \alpha_{y}=344.4 \mathrm{~m} / \mathrm{s} \\
& V_{1} \sin \alpha_{1}=V_{r_{2}} \sin \beta_{2} \\
& V_{r_{2}} \sin 5_{2}=\frac{380 \times \sin 25}{\sin 35}=280 \mathrm{~m} / \mathrm{s} \\
& v_{H_{2}}=U-V_{\varepsilon_{2}} \cos \beta \geq 261.8-280 \times \cos 35=32.4 \mathrm{~m} / \mathrm{s} \\
& \omega=v\left(v_{\mu_{1}}-v_{u_{2}}\right) \\
& =261.8(34.44-32.4) \\
& =81.7 \mathrm{~kJ} / \mathrm{hg} \\
& R=\frac{\omega-\frac{v_{1}^{2}-v_{2}^{2}}{2}}{\omega}= \\
& \epsilon=\frac{\omega}{\omega+\frac{v_{2}}{2}}= \\
& V_{1}>V_{2} \\
& v_{1}<v_{2}
\end{aligned}
$$

$\frac{6}{P_{a i}}$

$$
\begin{aligned}
& \quad V_{1}=60 \mathrm{~m} / \mathrm{s} \quad D_{1}=90 \mathrm{~cm}, \quad \alpha_{1}=30^{\circ} \\
& N=1200 \mathrm{rpm} . \quad D_{2}=30 \mathrm{~cm} . \\
& U_{1}=\frac{2 \pi N}{60} \times \frac{D_{1}}{2}=\frac{2 \pi \times 120010}{60} \times \frac{0.9}{2}=18 \pi \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
v_{r_{1}}^{2}=v_{1}^{2}+U_{1}^{2}-2 v_{1} v_{1} \cos \alpha_{1}
$$

$$
=60^{2}+(18 \pi)^{2}
$$

$$
-2 \times 60 \times 18 \pi \times \cos 30
$$

$$
\begin{aligned}
& =921 \mathrm{~m}^{2} / \mathrm{s} \Rightarrow V_{s_{1}}=30.3 \mathrm{~m} / \mathrm{s} \\
& V_{1} \sin \alpha_{1}=V_{r_{1}} \sin \beta_{1} \Rightarrow \sin \beta_{1}=\frac{60 \times \sin 30}{30.3}=0.99 \\
& \beta_{1}=81.89^{\circ} .
\end{aligned}
$$

$$
\begin{aligned}
& \tan \beta_{2}=\frac{v_{1} \sin \alpha_{1}}{6 \pi}=60 x \\
& \beta_{2}=57.8^{\circ} \\
& \omega=U_{1} v_{t_{2}}-U_{2} v_{t_{2}} \\
& =18 \pi \times 60 \times \cos 30 \\
& =2938 \mathrm{~J} / \mathrm{kg}
\end{aligned}
$$

$$
\begin{aligned}
& 1-R=\frac{60^{2}-(60 \times \sin 30)^{2}}{2 \times 2938} \\
& =\frac{675}{1469} \\
& \epsilon=\frac{V_{1}^{2}-V_{1} L}{V_{1}^{2}-R V_{2}^{2}}=\frac{60^{2}-30^{2}}{60^{2}-0.54 \times 30^{2}} \quad R=1-\frac{675}{1469}=0.54 \\
& =\frac{6}{7}=0.86
\end{aligned}
$$

7

$$
\begin{gathered}
U=3+\frac{35 \pi}{3}=36.6 \mathrm{~m} / \mathrm{s} \\
V_{U_{1}}= \\
=V_{1} \cos \alpha_{1} \\
=100 \times \cos 28 \\
=88.3 \mathrm{~m} / \mathrm{s} \\
\tan ^{-1}
\end{gathered} \beta_{1}^{\prime}=\left(\frac{100 \times \sin 28}{88.3-36.6}\right)
$$

$$
\tan \beta=\tan ^{1}\left(\frac{100 \times \sin 28}{36.6 .88 .3}\right)
$$

$$
=-42.2
$$

$$
\begin{aligned}
& \omega=U\left[V_{u_{1}}-V_{u_{2}}\right] \\
&=U[88.3-(36.6-88.3)] \\
&=51245 / \mathrm{kg} \\
& \frac{V_{1}^{2}-V_{2}^{2}}{2}=
\end{aligned}
$$

$$
\omega=\frac{\left(v_{1}^{2}-v_{2}^{2}\right)-\left(v_{r}^{2}-v_{r}^{2}\right)}{2}
$$

$$
=\frac{\left(v_{1}^{2}-v_{2}^{2}\right)+\left(v_{r_{2}}^{2}-v_{2 n}^{2}\right)}{2}
$$

Dymmetry $\quad R=0.5$
$\frac{8}{\mathrm{Pai}}$

$$
\begin{aligned}
U & =125 \mathrm{~m} / \mathrm{s} \\
\beta_{1} & =40^{\circ}, \beta_{2}=25^{\circ} \\
V_{1} & =2255^{22} \mathrm{~m} / \mathrm{s} . \\
V_{r_{2}} & =1.5 \mathrm{Vr}
\end{aligned}
$$

$$
\begin{aligned}
& V_{r_{1}} \cos \beta_{1}+v_{1} \cos \alpha_{1}=V_{r_{2}} \cos \beta_{2}+v_{2} \cos \alpha_{2} \\
& V_{r_{1}} \sin \beta_{1}=V_{1} \sin \alpha_{1} \\
& v_{r_{1}} \cos \beta_{1} \cdot \frac{\sin \beta_{1}}{\cos \beta_{1}}=V_{1} \sin \alpha_{1} \\
& v_{r_{1}} \tan \beta_{1} \\
& v_{21} \cos \beta_{1}=v_{1} \sin \alpha_{1} \cdot \cot \beta_{1} \\
& v_{1} \sin \alpha_{1} \cot \beta_{1}+v_{1} \cos \alpha_{1}=U \\
& 225 \times \cot 40 \times \sin \alpha_{1}+225 \cos \alpha_{1}=125 \\
& 225
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{2}=50 \\
& \begin{aligned}
& \tan \alpha_{1}=\frac{109 \sin 40}{125+109 \cos 40}=\frac{70.1}{208.5} \Rightarrow \alpha_{1}=18.6^{\circ} . \\
& v_{r_{2}}=1.5 \times 109=163.5 \mathrm{~m} / \mathrm{s} . \\
& \begin{aligned}
v_{u_{2}} & =v_{r_{2}} \cos \beta_{2}=163.5 \times \cos 25-U \\
& =148.2 \mathrm{~m} / \mathrm{s}-U=23.2
\end{aligned} \\
& w=U\left(v_{m_{1}}-v_{u_{2}}\right)=125 \times(208.5+148.2)=28962.5 \mathrm{~J} / \mathrm{gg} .
\end{aligned}
\end{aligned}
$$

$$
v_{2}^{2}=125^{2}+163.5^{2}-2 \times 125 \times 163.5 \times \cos 25
$$

$$
v_{2}=72.9 \mathrm{~m} / \mathrm{s}
$$

$$
\frac{v_{1}^{2}-v_{2}^{2}}{2}=\frac{220^{2}-729^{2}}{2}=21542.8 \mathrm{~ms}
$$

$$
R=\frac{28962.5-21542.8}{28962.5}=0.26
$$

$$
\epsilon=\frac{28962.5}{28962.5 * \frac{72.92}{2}}=0.02 .92
$$

$$
\begin{aligned}
\text { Tha } & =220 \sin 18.6-163.55 i 25 \\
& =1.07 \mathrm{~N} /(\mathrm{hs} / \mathrm{s})
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
220^{2}=125^{2}+x^{2}-2 \times 125 \times x \times x \\
\cos 140
\end{array} \\
& \begin{array}{l}
v_{1}^{2}=u^{2}+v_{r}^{2}-2 U v_{r} \cos \beta_{1} \\
2205_{0}^{2}=125^{2}+x^{2}-2 \times 125 \times x \times \cos 14
\end{array} \\
& 35000=x^{2}+191.5 x \\
& x^{2}+191.5 x-32775 \\
& x=\frac{-191.5 \pm \sqrt{\sqrt{3505}^{2}+4 \times 3+20215}}{2} \\
& =\frac{-191.5 \pm 420.3}{2} \\
& =144.4 \mathrm{~m} / \mathrm{s}-109 \mathrm{~m} / \mathrm{s} \text {. } \\
& x^{2}+191.5 x-32775=0 \\
& x=\frac{-191.5 \pm \sqrt{1915^{2}+4 \times 32785}}{2} \\
& =\frac{-191.5 \pm 409.6}{2} \\
& =109 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

9
Pais
No whirl, $\alpha_{1}=90$

$$
\begin{aligned}
& V_{1}=12 \mathrm{~m} / \mathrm{s} \\
& D_{1}=10 \mathrm{~cm}, \quad D_{2}=20 \mathrm{~cm} \\
& U_{1}=\frac{2 \pi \mathrm{~N}}{60} \times \frac{D_{1}}{2} \\
&=\frac{2 \pi \times 2000}{60} \times \frac{0.1}{2} \\
&= 10.5 \mathrm{~V} \\
& \tan \beta_{1}=\frac{V_{1}}{U}=\frac{12}{10.5} \\
& \beta_{1}=\tan ^{-1}\left(\frac{12}{10.5}\right)=48.8^{\circ} \\
& V_{r_{4}}=\sqrt{U_{1}^{2}+V_{1}^{2}} \\
&=\sqrt{10.5^{2}+12^{2}} \\
&=15.9 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

$$
D_{1}=10 \mathrm{~cm}, \quad D_{2}=20 \mathrm{~cm}, \quad N=2000 \mathrm{ppm}
$$

$$
U_{2}=21 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{aligned}
V_{r_{2}} & =0.75 \mathrm{Vr} \\
& =0.75 \times 15.9 \\
& =12 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\beta_{2}=80^{\circ} .
$$

$$
\begin{aligned}
V_{u_{2}} & =U_{2}-V_{v_{2}} \cos \beta_{2} \\
& =u-12 \times \cos 80 \\
& =18.9 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
\omega & =U_{2} v_{u_{2}} \\
& =21 \times 18.9 \mathrm{~J} / \mathrm{hg} \\
& =396 . q^{2} \\
\tan _{2} & =\frac{V_{r 2} \sin p_{2}}{v_{u_{2}}} \\
& =\frac{12 \sin 80}{18.9} \\
& =0.625 \\
\alpha_{2} & =320 \\
v_{2} & =\sqrt{\left(v_{r_{2}} \sin / 2\right)^{2}+\left(v_{u_{2}}\right)^{2}} \\
& =22.3 \\
R & =\frac{369.9-\left(22.3^{2}-12^{2}\right) / 2}{369.9} \\
& =0.52
\end{aligned}
$$

