$$
\omega=\left(u_{1} v_{u_{1}}-u_{2} v_{u_{2}}\right)
$$

Radial flow m / C at inlet, radially. \& $\alpha_{1}=90^{\circ}$

$$
\forall v_{m}=0
$$

$$
\begin{aligned}
& \omega=-u_{2} v_{u_{2}} \\
& v_{u_{2}}=u_{2}-v_{n_{2}} \cot \beta_{2}
\end{aligned}
$$

Q volume flow rite A_{2} area at outlet

$$
\begin{aligned}
v_{n_{2}} & =\frac{Q}{A_{2}} \\
\omega & =u_{2}\left(u_{2}-v_{n_{2}} \cot \beta_{2}\right) \\
& =u_{2}^{2}-u_{2} \frac{Q}{A_{2}} \cot \beta_{2}
\end{aligned}
$$

N constant, A_{2} constant, β_{2} constant

$$
\begin{aligned}
& \omega=A-B Q \\
& A=u_{2}^{2}, B=\frac{U_{2} \cot \beta_{2}}{A_{2}} \\
& \omega \underset{Q}{\sim} A-B Q \quad \begin{array}{l}
B_{2}=90^{\circ} \\
\beta_{2}<90^{\circ}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
P & =\rho Q g H \\
& =\dot{m} \omega
\end{aligned}
$$

Losses
Premore
aorta inertia
decrease of normal component

$$
\beta_{2}<90
$$

Backwardcurved vanes

Vane-congrment flow of velocity

$\omega=\mu\left(u_{2} v_{u_{2}}\right)$
$\mu=$ slipfactor
Qchagis
(1) Frictional losses αv^{2}

(2) Shock losses

$$
\begin{aligned}
& \omega=0 \text { ? } \\
& \alpha_{1}=90^{\circ} \Rightarrow V_{L_{1}}=0 \\
& V_{u_{2}}=0 \quad \alpha_{2}=90^{\circ} \text {. } \\
& \omega=u_{1} \hat{v_{u}}-u_{2} v_{u_{2}} \\
& =-u_{2} v_{u_{2}} \\
& \text { = tre } \\
& \text { Clantest } 2 \\
& D_{2} / D_{1}=2 \\
& u_{2} / u_{1}=2 \\
& \beta_{1}=45^{\circ} \text {. } \\
& V_{1}=V_{n_{1}}=U_{1} \\
& 2=\cot \beta 2 \\
& \tan \beta=\frac{1}{2} \\
& \beta_{2}=\tan ^{-1}\left(\frac{1}{2}\right)
\end{aligned}
$$

Chup 4

$$
U_{1}=\frac{2 \pi \mathrm{~N}}{60} \times \frac{D_{1}}{2}=\frac{2 \times \pi \times 2500}{60} \times \frac{4.5}{200}=5.9 \mathrm{~m} / \mathrm{s}
$$

Pail

$$
\begin{aligned}
& =H_{1} 45 \mathrm{~m} / \mathrm{s} \quad 10.3 \quad 134.93 \\
& w_{E}=u_{2} v_{u_{2}}=18.1 \times 14.45=150 \mathrm{~J} / \mathrm{kg} \\
& 134.93130 .95 / \mathrm{kg} .
\end{aligned}
$$

$$
\begin{aligned}
& \omega=u_{2} \mathrm{u}_{2} .134 .93=130.9 \mathrm{~kg} . \\
& \omega=0.97 \times 150=14 \mathrm{kWF} \\
& 130.9
\end{aligned}
$$

$$
\begin{aligned}
& \omega=0.97 \times 130.9 \\
& P=\frac{m \omega}{\theta \eta_{0}}=\frac{30 \times 145.5}{0.875}=1.365 \mathrm{~kW} .48 \mathrm{~kW} .
\end{aligned}
$$

$$
\begin{aligned}
& V_{2}=\sqrt{6^{2}+10.3^{2}}=\frac{\omega \mathrm{m} / \mathrm{s} 11.9 \mathrm{~m} / \mathrm{s}}{11.9)^{2}-10^{2}} \\
& R=\frac{\omega-\frac{v_{2}^{2}-v_{1}^{2}}{2}}{\omega}=\frac{130.9-\frac{130.9}{2}=0.84}{130.9}=
\end{aligned}
$$

$$
\begin{aligned}
& D_{1}=4.5 \mathrm{~cm} \\
& D_{2}=10 \mathrm{~cm} \\
& u_{2}=\frac{2 \times \pi \times 2500}{60} \times \frac{10}{200}=13.1 \mathrm{~m} \\
& \beta_{2}=65^{\circ} \\
& \alpha_{1}=90^{\circ} \\
& v_{1}=10 \mathrm{~m} / \mathrm{s} \\
& v_{n_{2}}=0.6 \mathrm{~V}_{n_{1}} \\
& N=2500 \mathrm{rpm} \text {. } \\
& \dot{m}=30 \mathrm{~kg} / \mathrm{s} \text {. } \\
& v_{n_{1}}=V_{1}=10 \mathrm{~m} / \mathrm{s} \\
& v_{n_{2}}=0.6 v_{n_{1}}=0.6 \times 10 \mathrm{~m} / \mathrm{s}=\frac{6}{10} \mathrm{~m} \text {. } \\
& v_{n_{2}} \cot \beta_{2}=\frac{6}{4} \times \cot 65=5 \mathrm{~m} / \mathrm{s} \\
& v_{u_{2}}=u_{2}-v_{n_{2}} \cot \beta_{2} \\
& =13.1-2.8 \\
& =\frac{10.3}{1.45} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

