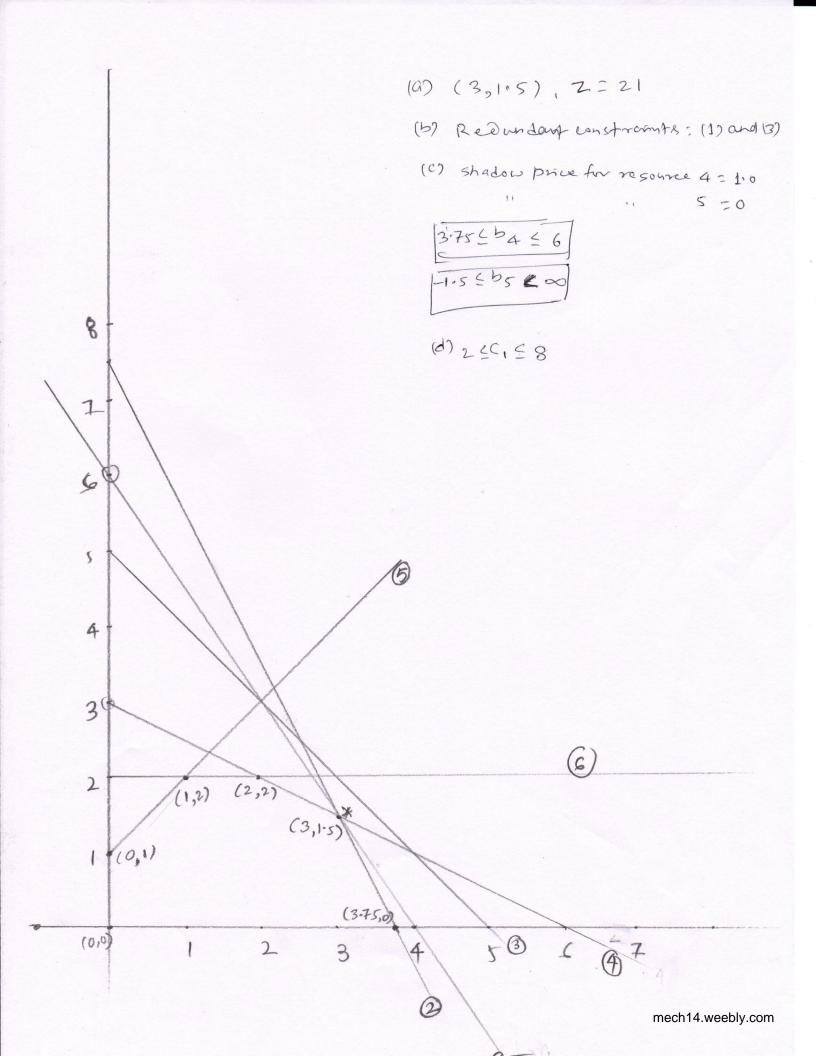
(1)

Let Shift 1 = 12AM-6AM, Shift 2 = 6AM-12PM, Shift 3 = 12PM-6PM, Shift 4 = 6PM-12AM. Let xij = workers working shifts i and j

Min Z =
$$144(x_{12} + x_{14} + x_{23} + x_{34}) + 216(x_{13} + x_{24})$$

Subject to


$$x_{12} + x_{13} + x_{14} \ge 15$$

$$x_{12} + x_{23} + x_{24} \ge 5$$

$$x_{13} + x_{23} + x_{34} \ge 12$$

$$x_{14} + x_{24} + x_{34} \ge 6$$

All variables ≥0

- a) $x_4=2$, $x_5=1$, $x_6=6$, $x_1=x_2=x_3=0$.
- b) $x_1=1, x_4=1, x_5=2, x_6=4, x_2=x_3=0$ is the basic feasible solution. Net change in Z=3-2=1.
- c) Max $x_1 = Min (\infty, \frac{2}{1}, \frac{6}{2}) = 2.$
- d) $x_1=2$, $x_5=3$, $x_6=2$, $x_2=x_3=x_4=0$ is the new basic feasible solution.
- e) No. It is not optimal, because the relative profit for the nonbasic variable x_3 is 1. Hence Z can be increased further.

Modified problem

Max $z = 321 + 42 - M_{26} - M_{24}$ Sit. $-x_1 + 42 - x_3 + x_6 = 1$ $x_1 + x_2 - x_4 + x_4 = 3$ $2x_1 + x_2 + x_5 = 4$ $x_1 + x_2 + x_5 = 4$

	BV 24 22 23 24 25 To XI RHS Ratio
	√26 -1 ① -1 0 0 1 0 1 1 →
	27 1 0
	not in properties
	7-1-3 -1 0 ROTKO -MR.
	I am M M
	1 -1 0
/	22 -1
	2 2 0
	12 0
, /	73 3 -(I+M) M (I+2M) (1+2M)
1	10 0 %
	7/2 12
	1/ 1/2 0 /2 /2
(B)	
	25 0 0 12 (12) M-1 M+2 5
	2 0 1 -2
	LIVE DIL
	261 0 1/3 0 1/3 43
1	26 /3 -10
	1 24 0 0 - 1/3 (M-1/3) M 5
	2 0

Q.S. > 60+3 Minz = 3x1 + 6.x2 + 2713 S.+!- 272+2737,6 211+72+ 23 7,3 X1, X2, X37,0. Modified problem! -Myn. Z = 3x1+6x2+2x3+0-x4+0-25 $5.\pm ! x_1 + 3x_2 + 2x_3 - x_4 + x_6 = 6$ $2x_1 + x_2 + x_3 - x_5 + \overline{x_7} = 3$ $x_1, x_2, x_3, x_4, x_5, x_6, x_7 > 0.$ Phase 1!-Min 7' - 76 + 77 Min (-7)' = - xe - x7. S.+!- x1+3x2+2x3-x4+x6=6 $2x_1 + x_2 + x_3 - x_5 + x_4 = 3$ X1, X2, X3, X4, X5, X6, X7 7,0

N 0 -

		\$	1							. Ke.3
	Boy	Ž,	X ₂	X3	X4	X 5	X6	X7	RUL	Rahio
	<u>X</u> 4	L	3	2	-1	0	1	D	6	2
	Xz	2	L	1	0	-1	0	1	3	3
	-=='	O	0	0	0	0	1	1	0	
	-7'	-3	-4	1-3	1	EX I	0	0	-9	
	α_2	1/3) = L >	2	13 -1	/3	0 = 11.	3 0	2	6
	\overline{x}_{1}	5/3] 0	1	13 1	13 -	-1 -	43 4	1	3/5-
	-Z'	1-5	2 0)	1/3	-1/3	1 4	1/3 0	-1	
(V)	X 2	. 0	1					215 -45	9/5	×47
	XI	1		2	115	115	-3/5	-45 3/5	315	
	-7	1	0 X + p ×	D	0	0	0	1 1	0	

Min z/ = 9 x/ = 0 / x/ = 0 Basic variables; 2=3/5

Phase I !-

Min == 3x1+6x2+2x3.

			1				
B.V	X,	X 2	X3	X4	X5	RHS	Radio
X2	0	T	315	-2/5	1/5	9/5	3
×1	1	O	115	45	-3/5	3/5	3
Z'	3	6	2	0	0	0	
Z '	0	0	-11/5	9/5	3/5	-63/5	
*3	0	5/n	1	-2/2	1/3	3	
×1	1	-1/3	0	1/3	-2/3	0	
킨	0	11/3	0	43	4/3	-6	

X1=0, X2=0, X3=3, Zmin=5

if, we leave XI!

B,V	×ı	X ₂	X3	X4	X5	RHS	Radio
X 2	-3	T	0	-1	2	0	0
×3	5	0	L	1	-3	3	-1
7'	11	Ō	0	4	-6	-6	
X5	-3/2	4/2	0	-1/2	1	0	
X3	1/2	3/2	1	-1/2	Ō	3	
7/	2	3	O	1	0	-6	***

Zmin = 6

mech14.weebly.com

Anymorted from

Max
$$z = 10x_1 + 12x_2 + 12x_3$$

1. $x_1 + 2x_2 + 2x_3 + x_4 = 20$
 $2x_1 + x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_1 + 2x_2 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_1 + 2x_2 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_1 + 2x_2 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_1 + 2x_2 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_1 + 2x_2 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_1 + 2x_1 + 2x_2 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_1 + 2x_1 + 2x_2 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_1 + 2x_1 + 2x_2 + 2x_2 + 2x_3 + x_5 = 20$
 $2x_1 + 2x_1 + 2x_1 + 2x_2 + 2x_2 + 2x_3 + 2x_5 = 20$
 $2x_1 + 2x_1 + 2x_1 + 2x_2 + 2x_2 + 2x_3 + 2x_5 = 20$
 $2x_1 + 2x_1 + 2x_1 + 2x_2 + 2x_2 + 2x_3 + 2x_5 = 20$
 $2x_1 + 2x_1 + 2x_1 + 2x_2 + 2x_2 + 2x_3 + 2x_5 = 20$
 $2x_1 + 2x_1 + 2x_1 + 2x_2 + 2x_2 + 2x_3 + 2x_5 = 20$
 $2x_1 + 2x_1 + 2x_1 + 2x_2 + 2x_2 + 2x_3 + 2x_5 = 20$
 $2x_1 + 2x_1 +$

Ratio :
$$\begin{bmatrix} 18^{-1}a_1 & -\frac{1}{1}a_1 & 0 & 0 \\ -\frac{1}{1}a_1 & -\frac{1}{1}a_1 & 0 & 0 \\ -\frac{1}{1}a_1 & -\frac{$$