Department of Mechanical Engineering IIT, Kharagpur

Design of Machine Elements Practice (ME39602)

3rd. Design Assignment: Design of an Industrial General Purpose Reduction Gear Unit (MONDAY Group: Spring Semester 2017)

[Duration (5 days) x 3 hours between -Mar 20 to Apr 17, 2017]

Design all gears and pinions of a two stage general purpose industrial gear box (see over leaf). Verify the design of the intermediate gear shaft with the helical & bevel - pinion & gear.

Select the bearings and draw plan, elevation and side views of the assembled gear sets placed in lower housing (see over leaf). Make a bill of material.

<u>Data</u>: The 2- stage reduction gear box has the following specifications. (Note: See illustrations overleaf as examples). In general non co-axial horizontal input and output (except otherwise mentioned).

GROUP	POWER (kW)	INPUT RPM	OUTPUT RPM	DUTY		OVERHAUL	
				Sub Group	Description	TIME	LUBRICATION
A, B, C, D,	12	1500	170	A,E,I,M, Q, U	Precision, Intermittent, No shock	2 years	Forced
II E, F,G,H	10	1800	200	B,F,J,N,R	General, Continuous, Medium shock		Oil Sump
III I, J, K, L	09	1450	125	C,G,K,O, S, V	General, Intermittent, Heavy Shock		Oil Sump
IV M,N,O,P	07	1200	125	D,H,L,P,T	Precision, Continuous, Medium Shock		Forced
V Q,R,S,T	05	1500	140				
VI U, V	06	950	100	Horizontal input and vertical output (Forced Lubrication)			

For helical gear (pinion) number of teeth may be taken as low as 15 & for straight bevel it is 17. (First stage reduction ratio to be around 3.)

Module (m, in meter) can be estimated as:

For helical gear:
$$m_{helical} = \sqrt[3]{\frac{2T\cos\beta}{S_d} \frac{2Y\psi}{c_v c_w}}$$

For helical gear:
$$m_{helical} = \sqrt[3]{\frac{2T\cos\beta}{S_d} \over c_v c_w}$$
 For straight tooth bevel gear: $m_{bevel} = \sqrt[3]{\frac{2T}{S_d} \frac{2T}{S_d} \frac{2T}{S_d}}$

Where,

T = Torque (Nm), S_d = Allowable design strength (Pas),

Z = Number of teeth, $\beta =$ Helix angle (degree),

 $c_v = \text{Velocity factor}, c_w = \text{Wear load / Lubrication factor}$

($c_v = 1$ for precision & 1.2 for general purpose gear)

 $c_w = 1$ for force lubrication & 1.5 for sump/splash lubrication).

 ψ = Width factor [active width (b) of gear/module],

 $\psi_a = b/l$ for bevel gear (See Fig. -1), usually 1/3 or less,

Modified Lewis form factor $Y = \pi (0.154 - 0.912/Z')$:

For helical gear formative number of teeth, $Z' = Z/\cos^3 \beta$;

and for straight bevel gear $Z' = Z/\cos \gamma$ ($\gamma = \text{pitch cone angle}$, see Fig. 1).

Fig.- 1: (Straight Bevel)

Pitch Circle Diameter, PCD (Helical) = $Z \times m_{helical} / \cos \beta$; Mean PCD (Straight Bevel) = $2 \times mean \ r - Z \times m_{bevel}$.

 $S_d = Yield \ strength/2.5 \ to \ 3$. For selecting material and other information follow any machine design book.

Fig.- 2: Photographic view (Example)
Two Stage Bevel-Helical Horizontal Input-Output.

Fig.- 3: Assembled plan view (Top cover removed) (Not of the same one as in Fig. 2).