$$
\begin{aligned}
\left.\frac{2-D \text { problems }}{-\frac{\partial}{\partial x}\left(a_{11} \frac{\partial u}{\partial x}\right.}+a_{12} \frac{\partial u}{\partial y}\right) & -\frac{\partial}{\partial y}\left(a_{21} \frac{\partial u}{\partial x}+a_{22} \frac{\partial u}{\partial y}\right)+a_{0} u-f=0 \\
-a & =a_{0}=0
\end{aligned}
$$

For Poisson's eq $\quad a_{12}=a_{21}=a_{0}=0$
For Laplace eq ${ }^{n} \quad a_{12}=a_{21}=a_{2}=f=0$

$$
\begin{gathered}
\text { For Laplace eq } a_{12}=a_{21} \\
\int_{\Omega} w\left[-\frac{\partial}{\partial x}\left(a_{1} \frac{\partial u}{\partial x}+a_{12} \frac{\partial u}{\partial y}\right)-\frac{\partial}{\partial y}\left(a_{21} \frac{\partial u}{\partial x}+a_{22} \frac{\partial u}{\partial y}\right)+a_{0} u-f\right] d x d y \\
F_{1} \\
F_{2}=0 \\
\end{gathered}
$$

$$
=0
$$

$$
\int_{\Omega} w\left[\frac{-\partial}{\partial x} F_{1}-\frac{\partial}{\partial y} F_{2}\right] d x d y+\int_{\Omega} w a_{0} u d x d y-\int_{\Omega} \omega f d x d y=0
$$

$$
\omega \frac{d}{d x} k=\frac{d(\omega k)}{d x}-\frac{k \frac{d w}{d x}}{d(\omega k)}
$$

$$
\begin{aligned}
& -\frac{w d k}{d x}=k \frac{d w}{d x}-\frac{d(\omega k)}{d x} \\
& \int_{\Omega}\left(\frac{\partial w}{\partial x} F_{1}+\frac{\partial w}{\partial y} F_{2}\right) d x d y-\int_{\Omega} \frac{\partial\left(w F_{1}\right) d x d y-\int_{\Omega} \frac{\partial\left(w f_{2}\right) d x d y}{\partial y}}{}+A-B=0
\end{aligned}
$$

$$
-\frac{w d k}{d x}=k \frac{d w}{d x}-\frac{d(\omega k)}{d x}
$$

$$
+A-B=0
$$

$$
\begin{aligned}
+A & -B \\
\int_{\Omega} \frac{\partial\left(w F_{1}\right) d x d y}{\gamma x} & =\int_{s} w F_{1} n_{x} d s \\
& =\int w f_{2} n_{y} d s
\end{aligned}
$$

$$
\begin{aligned}
& \int_{\Omega} \frac{\partial\left(w f_{2}\right) d x d y=\int_{s}^{\partial y}}{w F_{2}} \\
& \int_{\Omega}\left[\frac{\partial w}{\partial x}\left(a_{11} \frac{\partial u}{\partial x}+a_{12} \frac{\partial u}{\partial y}\right)+\frac{\partial w}{\partial y}\left(a_{21} \frac{\partial u}{\partial x}+a_{22} \frac{\partial u}{\partial y}\right)\right] d x d y \\
& +\int_{0} w a_{0} u d x d y=\int_{\Omega} w f d x d y+\int_{S} w\left(a_{11} \frac{\partial u}{\partial x}+a_{12} \frac{\partial u}{\partial y}\right) n_{x} d \\
& \left(w / a_{21} \frac{\partial u}{\partial x}+a_{22} \frac{\partial u}{\partial y}\right) n_{y}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial w}{\partial x}\left(a_{11} \frac{\partial u}{\partial x}+a_{12} \frac{\partial u}{\partial y}\right) & +\frac{\partial w}{\partial y}\left(a_{21} \frac{\partial}{\partial x}\right. \\
+\int_{\Omega} w a_{0} u d x d y= & \int w f d x d y+\int_{\Omega} w\left(a_{11} \frac{\partial u}{\partial x}+a_{12} \frac{\partial u}{\partial y}\right) n_{x} d s \\
& +\int_{s} w\left(a_{21} \frac{\partial u}{\partial x}+a_{22} \frac{\partial u}{\partial y}\right) n_{y} d s
\end{aligned}
$$

Simplified form, $\int_{\Omega}\left(\frac{\partial w}{\partial x} a \frac{\partial y}{\partial x}+\frac{\partial w}{\partial y} a \frac{\partial y}{\partial y}\right) d x d y=\int_{s}^{s} w f d x d y+\int_{s}^{w} w n d s$

$$
\begin{aligned}
& q_{n}=a\left(\frac{\partial u}{\partial x} n_{x}+\frac{\partial u}{\partial y} n_{y}\right) \\
& R-R-F \Rightarrow \int_{\Omega}\left[\frac{\partial \psi_{i}}{\partial x} a \sum_{j=1}^{n} \frac{\partial}{\partial x}\left(u_{j} \psi_{j}\right)+\frac{\partial \psi_{i}}{\partial y} a \sum_{j=1}^{n} \frac{\partial}{\partial y}\left(u_{j} \psi_{j}\right)\right] d x d y \\
&=\int_{\Omega} \psi_{i} f d x d y+\int_{s} \psi_{i} q_{n} d s
\end{aligned}
$$

Matrix of $n \times n$
(2) Triangular

The elements are of two types (1) Rectangular

$$
x^{4} x^{2} y x^{2} y^{2} x y^{3} y^{4}
$$

For quadratic trianguenent.

$$
1+x+x^{2}+x y+y^{2}+y
$$

for Linear rectangular element.

For quadratic rectangular element

Total no. of nodal points

$$
=9
$$

$x y$ is at the center of the rectangle.

$$
\begin{aligned}
& 1 \\
& x^{2} x y \quad y^{2} \\
& x^{3} \quad x^{2} y \quad x y^{2} y^{3}
\end{aligned}
$$

Boundary terms \rightarrow coefficient of weight fundions p or The form of w in wo ak bor $/ 1-D$ $E B C \rightarrow$ of ω in wo at $1-D$
Ingubal wordinates.
\{linear triangular element\} . ~
$A=$ area of the triangle.

$$
\begin{aligned}
& \frac{\alpha_{1}+\alpha_{2}+\alpha_{3}}{}=2 A \\
& \vdots \rightarrow \dot{i} \rightarrow \bar{k}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{i}=x_{j} y_{k}-x_{k} y_{j} \\
& \beta_{i}=y_{j}-y_{k}
\end{aligned}
$$

$$
\underset{i}{2} \rightarrow{ }_{j}^{3} \rightarrow 1
$$

$$
y_{i}=-\left(x_{j}-x_{k}\right)
$$

$$
3 \rightarrow 1 \rightarrow 2
$$

$$
\begin{aligned}
& \alpha_{1}+\alpha_{2}+\alpha_{3}=2 A \\
& k_{i j}=a \int_{\Omega}\left(\frac{\beta_{i}}{2 A} * \frac{\beta_{j}}{2 A}+\frac{\gamma_{i}}{2 A} \frac{\gamma_{j}}{2 A}\right) d x d y \\
& k_{i j}=a\left(\frac{\beta_{i} \beta_{j}+\gamma_{i} \gamma_{j}}{4 A}\right)
\end{aligned}
$$

1st element numbering in local Coordinates was chosen arbitarily bet for other successive elements we need to follow the 1st element numbering scheme otherwise the area computation will be wrong.

Linear rectangulan element
Local coor dinates

$$
\left(\begin{array}{c}
\left.\left(\frac{\bar{y}}{x}\right)^{4} \square_{(1-\bar{y}}^{x}\right) \underbrace{\left(1-\frac{\bar{x}}{x}\right)}_{x} \\
y \underbrace{\frac{x_{x}}{n}}
\end{array}\right.
$$

$$
\begin{aligned}
& \psi_{4}=\left(1-\frac{\bar{x}}{h}\right) \frac{\bar{y}}{h} \\
& \psi_{1}=\left(1-\frac{\bar{x}}{h}\right)\left(1-\frac{\bar{y}}{h}\right) \\
& \psi_{2}=\frac{\bar{x}}{h}\left(1-\frac{\bar{y}}{h}\right) \\
& \psi_{3}=\frac{\bar{x}}{h} \frac{\bar{y}}{h}
\end{aligned}
$$

Natural coordinates

$$
\begin{aligned}
& \psi_{4}=\left(\frac{1-\varepsilon_{0}}{2}\right)\left(\frac{1+\eta}{2}\right) \\
& \psi_{1}=\left(\frac{1-\xi_{1}}{2}\right)\left(\frac{1-\eta}{2}\right) \\
& \psi_{2}=\left(\frac{1+\varepsilon_{0}}{2}\right)\left(\frac{1-\eta}{2}\right) \\
& \psi_{3}=\left(\frac{1+\varepsilon_{4}}{2}\right)\left(\frac{1+\eta}{2}\right)
\end{aligned}
$$

class of interpolation functions belonging to Lagrange interpolation function:

$$
\begin{aligned}
& \int_{\Omega}\left(\psi_{1}^{m} \psi_{2}^{n} \psi_{3}^{k}\right) d x d y=\frac{m!n!k!}{(m+n+k+2)!} 2 A \\
& \text { Y } \quad \text { comection } \\
& \text { Heat gruaration } \\
& \text { Preseribed } \\
& \text { Temperatura } \\
& \text { inculated }
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\partial}{\partial x}\left(k_{x} \frac{\partial T}{\partial x}\right)-\frac{\partial}{\partial y}\left(k_{y} \frac{\partial T}{\partial y}\right)=f(x, y) \\
& k_{x} \frac{\partial T}{\partial x} \hat{n}_{x}+k_{y} \frac{\partial T}{\partial y} \hat{n}_{y}+\beta\left(T-t_{\infty}\right)=\hat{q}_{n} \leftarrow \begin{array}{c}
\text { convective } \\
\text { boundary }
\end{array}
\end{aligned}
$$

This type of discrutisation is also allowed.

$$
\begin{aligned}
& \int_{\Omega}\left(k_{x} \frac{\partial W}{\partial x} \frac{\partial T}{\partial x}+k_{y} \frac{\partial w}{\partial y} \frac{\partial T}{\partial y}\right) d x d y=\int_{\Omega} W f d x d y+\oint_{s} W\left(k_{x} \frac{\partial T}{\partial x} \hat{n}_{x}+k_{y} \frac{\partial T}{\partial y} \hat{\hat{y}}_{y}\right) \\
& =\int_{\Omega} w f d x d y+\oint_{s} w\left[\beta\left(T-T_{\infty}\right)\right] d s \\
& \int\left(k_{x} \frac{\partial \psi_{i}}{\partial x} \frac{\partial}{\partial x} \sum_{j=1}^{3} \psi_{j} T_{j}+k_{y} \frac{\partial \psi_{i}}{\partial y} \frac{\partial}{\partial y} \sum_{j=1}^{3} \psi_{j} T_{j}\right) d x d y \\
& =\int \psi_{i}+d x d y+\oint_{s} \psi_{i}\left[\beta\left(\sum_{j=1}^{n} \psi_{j} \Gamma_{j}-T_{\infty}\right)\right] d s \\
& \psi_{i}=\frac{1}{2 A}\left(\alpha_{i}+\beta_{i} x+\gamma_{i} y\right) \\
& \frac{\partial \psi_{i}}{\partial x}=\frac{1}{2 A} \beta_{i} \quad \frac{\partial \psi_{i}}{\partial y}=\frac{\gamma_{i}}{2 A} \\
& k_{i j}=\int_{\Omega}\left(k_{x} \frac{\beta_{i}}{2 A} \frac{\beta_{j}}{2 A}+k_{y} \frac{\gamma_{i}}{2 A} \frac{\gamma_{j}}{2 A}\right) d x^{\prime \prime} d y \\
& k_{i j}=\int_{\Omega} \frac{1}{4 A^{2}}\left(k_{x} \beta_{i} \beta_{j}+k_{y} \gamma_{i} \gamma_{j}\right) d x d y
\end{aligned}
$$

(0) $k_{i j}=\frac{1}{4 A}\left(k_{x} \beta_{i} \beta_{j}+k_{y} \gamma_{i} \gamma_{j}\right)$
$\left\{\because \beta_{i}, \beta_{j}, \gamma_{i}, \gamma_{j}, k_{x}, k_{y}\right.$ are constants Also,
$\int_{\Omega} d x d y=A$

$$
\begin{array}{ll}
\alpha_{i}=x_{j} y_{k}-x_{k} y_{j} & \frac{\text { Given }}{x_{1}=0, y_{1}=0} \\
\beta_{i}=\left(y_{j}-y_{k}\right) & x_{2}=a, y_{2}=0 \\
\gamma_{i}=-\left(x_{j}-x_{k}\right) & x_{3}=a, y_{3}=a \\
x_{1}+\alpha_{2}+\alpha_{3}=2 A & x_{4}=0, y_{4}=a \\
& x_{5}=\frac{a}{2}, y_{5}=\frac{a}{2}
\end{array}
$$

For the first element

$$
\begin{aligned}
& \beta_{1}=\left(0-\frac{a}{2}\right)=-\frac{a}{2} \\
& \beta_{2}=\left(\frac{a}{2}-0\right)=\frac{a}{2} \\
& \beta_{3}=(0-0)=0 \\
& \gamma_{1}=-\left(a-\frac{a}{2}\right)=-\frac{a}{2} \\
& \gamma_{2}=-\left(\frac{a}{2}-0\right)=-\frac{a}{2} \\
& \gamma_{3}=-(0-a)=a \\
& A=\frac{1}{2} \times a \times \frac{a}{2}=\frac{a^{2}}{4}
\end{aligned}
$$

$$
\begin{array}{ccc}
\frac{\text { Element }}{1} & \begin{array}{c}
\text { Local } \\
1-2-3 \\
\\
2
\end{array} & \frac{\text { Global }}{1-2-5} \\
3 & 1-2-3 & 2-3-5 \\
4 & 1-2-3 & 4-4-5 \\
4 & & 1-5
\end{array}
$$

$$
E B C, T_{2}=T_{3}=100
$$

$N B C$ - Side $1-2=k_{x} \frac{d T}{d x} \eta_{x}^{0}+k_{y} \frac{d T}{d y} n_{y}$ as insulated
side 3-4 $\oint w\left[q_{n}-\beta\left(T-T_{\infty}\right)\right] d s \equiv \oint \psi_{i} \beta$ Ids and $q_{n}=$ External heat source ${ }^{\text {on boundary }} \int_{s}^{3-4} \psi_{i} \beta t_{\infty} d s$
side 4-1 heat addition $\equiv \oint \psi_{i}$ q.ds
other integral interval heat generation Shat generation

$$
f_{i}=\int_{\Omega} w t_{0} d x d y=\int_{\Omega} \psi_{i} t_{0} d x d y\left\{\begin{array}{l}
\text { hest ages inter body } \\
\text { inside the }
\end{array}\right.
$$

$$
\begin{array}{lll}
{\left[\begin{array}{lll}
k_{11} & k_{12} & k_{13} \\
k_{21} & k_{22} & k_{23} \\
k_{31} & k_{32} & k_{33}
\end{array}\right]\left[\begin{array}{l}
T_{1} \\
T_{2} \\
T_{3}
\end{array}\right]=\left[\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right]\left[\begin{array}{l}
p_{1} \\
P_{1} \\
\text { ' } 1
\end{array}\right]} \\
\text { find matrix } f_{3}
\end{array}
$$

To find ' f ' matrix
$\because f$ is on the line in this care
This is ourdomain
Hence ψ^{\prime} ' to be put for calculating f will be of linear element Hence.

$$
\begin{aligned}
& f \text { will be of linear element } \beta T_{\infty} d s=\frac{s \alpha}{2} \\
& f_{1}=\int \psi_{1}=\frac{s \alpha}{2} \\
& f_{2}=\int \psi_{2} \beta T_{\infty} d s=0
\end{aligned}
$$

$$
\begin{aligned}
& f_{2}=\int \psi_{2} \\
& f_{3}=\int \psi_{3} \beta^{0} T_{\infty}^{0} d s=0
\end{aligned}
$$

$$
\begin{aligned}
\alpha & =\beta T_{\infty} \\
\psi_{1} & =1-\frac{s}{h} \\
\psi_{2} & =\frac{s}{h}
\end{aligned}
$$

It, was our domain then

$$
\begin{aligned}
& \psi_{1}=1-\frac{s}{n}, \quad \psi_{3}=\frac{s}{n} \\
& f_{1}=\int \psi_{1} \beta T_{\infty} d s=\frac{s \alpha}{2} \\
& f_{2}=\int \psi_{2} \beta T_{\infty} d s=0 \\
& f_{3}=\int \psi_{3} \beta T_{\infty} d s=\frac{s \alpha}{2}
\end{aligned}
$$

$\oint \psi_{i} \beta \sum_{j=1}^{3} T_{j} \psi_{j} d s$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
\int \psi_{1} \psi_{1} & c_{12} & \psi_{1} \psi_{2} \\
c_{21} & f \psi_{3} \psi_{0} \\
c_{2} & \int \psi_{2} \psi_{2} & f \psi_{2} \psi_{3}^{3} \\
\psi_{1} \psi_{2} & \psi_{2} & \int \psi_{3} \psi_{3}
\end{array}\right]\left\{\begin{array}{l}
T_{1} \\
T_{1} \psi_{3} \\
T_{2} \\
T_{3} \psi_{3}
\end{array}\right]} \\
& {\left[\begin{array}{lll}
k_{11}+c_{11} & k_{2}+c_{12} & k_{13} \\
k_{21}+c_{21} & k_{22}+c_{22} & k_{23} \\
k_{31} & k_{32} & k_{33}
\end{array}\right]\left[\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right]=\left[\begin{array}{l}
f_{1} \nrightarrow\left[\begin{array}{ll}
\frac{\beta T_{00} h}{2} \\
f_{2} \\
f_{3}
\end{array}\right] \frac{\frac{\beta T_{0} h}{2}}{\rightarrow 0}
\end{array}\right.} \\
& {\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right]=\frac{\beta 4}{6}\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]}
\end{aligned}
$$

for q_{0} boundary

$$
\begin{aligned}
& f_{1} \rightarrow \frac{q_{0} h}{2} \\
& f_{2} \rightarrow \frac{q_{0} h}{2} \\
& f_{3} \rightarrow 0
\end{aligned}
$$

for internal heat generation boundary condition.

$$
\begin{aligned}
& \text { for internal heat generation bounder y } \\
& \begin{array}{l}
\int_{\Omega} \psi_{i} f_{0} d x d y \quad \begin{array}{l}
\text { sit is integration over triangular element } \\
\psi_{i}
\end{array} \\
\quad \text { interpolation function } \\
\quad \int_{\Omega} \psi^{m} \psi^{n} \psi^{p} d \Omega=\frac{m!n!p!}{(m+n+p+2)!} \times 2 A
\end{array} \\
& \quad B_{i} B_{i}+k_{y} \beta_{i} \beta_{j}
\end{aligned}
$$

Element $k_{i j}=\frac{k_{x} \beta_{i} \beta_{j}+k_{y} \beta_{i} \beta_{j}}{4 A}$
local

| 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |

$$
k_{33}^{1}+k_{33}^{2}+k_{33}^{n}+k_{33}^{3}=(2+2+2+2) \frac{k}{2}=4 k
$$

$$
\begin{aligned}
& {\left[\begin{array}{c}
k \\
\uparrow \\
\text { Global }
\end{array}\left[\begin{array}{l}
T_{1} \\
T_{2} \\
T_{3} \\
T_{4} \\
T_{5}
\end{array}\right]=\left\{\begin{array}{l}
f_{1}^{\prime}+f_{2}^{4} \\
f_{2}^{\prime}+f_{1}^{2} \\
f_{2}^{3}+f_{1}^{3} \\
f_{2}^{3}+f_{1}^{4} \\
f_{3}^{2}+f_{3}^{2}+f_{3}^{3}+f_{3}^{4}
\end{array}\right]\right.} \\
&
\end{aligned}
$$

Interpolation Function
Quadratic interpolation (rectangular)?

This particular with 8 node number element is very com mon in, Any \& abacus and is creneled

How do you evaluate the problem with 8 node points.
Polynomial method \rightarrow "By using the properties of interpolation function we derieve the interpolation function.

$$
\begin{aligned}
& \psi_{1}=c_{1}(\xi+\eta+1)(\xi-1)(\eta-1) \\
& \text { at }(\xi, \eta)=(-1,-1) \\
& \psi_{1}(-1,-1)=1=c_{1}(-1-1+1)(-1-1)(-1-1) \\
& \Rightarrow c_{1}=-\frac{1 c_{1}}{4}
\end{aligned}
$$

To find ψ_{6}

$$
\begin{aligned}
& \varepsilon_{1}^{8+1=0} \underbrace{6}_{2} \int_{3}^{2} \\
& \psi_{6}=c_{6}(\xi+1)(\eta+1)(\eta-1) \\
& \psi_{6}(0,1)=c_{6}(1)(2)(-1) \\
& C_{6}=-\frac{1}{2} \\
& \eta+1=0 \\
& \psi_{6}=-\frac{1}{2}\left(\eta^{2}-1\right)(1+\xi) \\
& \frac{\partial \psi_{i}}{\partial \xi}=\frac{\partial \psi_{i}}{\partial x} \frac{\partial x}{\partial \xi}+\frac{\partial \psi_{i}}{\partial y} \frac{\partial y}{\partial \xi_{k}} \\
& \frac{\partial \psi_{i}}{\partial \eta}=\frac{\partial \psi_{i}}{\partial \eta} \frac{\partial x}{\partial q}+\frac{\partial \psi_{i}}{\partial y} \frac{\partial y}{\partial \eta} \\
& \left\{\begin{array}{l}
\frac{\partial \psi_{i}}{\partial \xi_{i}} \\
\frac{\partial \psi_{i}}{\partial \eta}
\end{array}\right\}=\left\{\begin{array}{ll}
\frac{\partial \psi}{\partial \xi} & \frac{\partial y}{\partial \xi_{i}} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right\}\left\{\begin{array}{l}
\frac{\partial \psi_{i}}{\partial x} \\
\frac{\partial \psi_{i}}{\partial y}
\end{array}\right\}
\end{aligned}
$$

$$
\left\{\begin{array}{c}
\frac{\partial \psi_{i}}{\partial x} \\
\frac{\partial \psi_{i}}{\partial y}
\end{array}\right\}=[J]^{-1}\left\{\begin{array}{l}
\frac{\partial \psi_{i}}{\partial z} \\
\frac{\partial \psi_{i}}{\partial \eta}
\end{array}\right\}
$$

yo

$$
x=x_{1} \psi_{1}+x_{2} \psi_{2}+\ldots+x_{9} \psi_{9} \quad \leftarrow_{\text {Geometric modelling }}^{x}
$$

$$
\begin{array}{ll}
x=x_{1} \psi_{1}+x_{1} \\
y=y_{1} \psi_{1}+y_{2} \psi_{2}+\cdots & -t y_{g} \psi_{9} \\
\left.\partial y-\partial s^{n} \psi_{1}\left(\xi_{1} n\right) y_{j}\right\} & +1 \\
l & (\xi, n) d
\end{array}
$$

$$
\frac{\partial y}{\partial \varepsilon_{1}}=\frac{\partial}{\partial z_{i}}\left\{\sum_{j=1}^{n} \psi_{j}\left(\xi_{j}, \eta\right) y_{j}\right\}
$$

$\mathrm{V}_{2} x^{\sqrt{5}}+\frac{-0}{\sqrt{3 / 5}}$
 2 -point integration'
//2, 3-point integration.
Functions are to be evaluated at $\xi_{i} \& \eta_{j}$ so integrand will be $f\left(\xi_{i}, \eta_{j}\right) * \omega_{i} * \omega_{j}$

Area coordinates

$$
\begin{aligned}
& A_{1}+A_{2}+A_{3}=A \\
& A_{1}=\frac{1}{2} b S \\
& A=\frac{1}{2} b h \\
& \frac{A_{1}}{A}=\frac{S}{h}=L_{1}
\end{aligned}
$$

h is 1 distance between $2-3$ and point 1 $b=$ length of side $2-3$
$S=1$ distance b / w side $2-3$ and P
Quadratic element

$$
\begin{aligned}
& \psi_{1}=C_{1}\left(L_{1}-\frac{1}{2}\right)\left(L_{1}-0\right) \\
& 1=C_{1}\left(1-\frac{1}{2}\right)(1-0) \Rightarrow C_{1}=2 \\
& \Rightarrow \psi_{1}=L_{1}\left(2 L_{1}-1\right)
\end{aligned}
$$

$$
L_{1}+L_{2}+L_{3}=1
$$

, L_{1}, L_{2}, L_{3} are called area coordinates.

Notes:- Cubic triangular element

$$
\begin{aligned}
& \psi_{1}=C_{1} L_{1}\left(L_{1}-\frac{1}{2}\right) \\
& 1=c_{1}(1)\left(\frac{1}{2}\right) \\
& \Rightarrow C_{1}=2 \\
& Y_{1}=L_{1}\left(2 L_{1}-1\right)
\end{aligned}
$$

$$
\psi_{6}=c_{6} * L_{1} * L_{3}
$$

$$
1=C_{6} * \frac{1}{2} * \frac{1}{2}
$$

$\Rightarrow C_{6}=4$

For linear triangular element

$$
\begin{aligned}
& \psi_{1}=c_{1} L_{1} \\
& c_{1}=1 \Rightarrow \psi_{1}=L_{1}
\end{aligned}
$$

For uric triangular element

$$
\begin{aligned}
\frac{\text { element }}{\psi_{1}} & =c_{1}\left(L_{1}-\frac{2}{3}\right)\left(L_{1}-\frac{1}{3}\right) L_{1} \\
\psi_{1}(1) & =c_{1}(1 / 3)(2 / 3)(1) \\
c_{1} & =9 / 2 \\
=0 \quad \psi_{1} & =\frac{\left(3 L_{1}-2\right)\left(3 L_{1}-1\right) L_{1}}{2}
\end{aligned}
$$

$$
\psi_{9}=c_{1} L_{1}\left(L_{1}-\frac{1}{3}\right) L_{3}
$$

For triangularelement

$$
\begin{aligned}
& \frac{\text { For }}{\psi_{1}}=f\left(L_{1}, L_{2}, L_{3}\right) \\
& L_{1}+L_{2}+L_{3}=1 \Rightarrow L_{3}=1-L_{1}-L_{2} \\
& \left.\psi_{1}=f\left(L_{1}\right) L_{2}, 1-L_{1}-L_{2}\right) \\
& \frac{\partial \psi_{i}}{\partial L_{1}}=\frac{\partial \psi_{i}}{\partial x} \frac{\partial x}{\partial L_{1}}+\frac{\partial \psi_{i}}{\partial y} \frac{\partial y}{\partial L_{1}} \\
& \frac{\partial \psi_{i}}{\partial L_{2}}=\frac{\partial \psi_{i}}{\partial x} \frac{\partial x}{\partial L_{2}}+\frac{\partial \psi_{i}}{\partial y} \frac{\partial y}{\partial L_{2}} \\
& \left\{\begin{array}{l}
\frac{\partial \psi_{i}}{\partial L_{1}} \\
\frac{\partial \psi_{i}}{\partial L_{2}}
\end{array}\right\}=\left\{\begin{array}{l}
\frac{\partial y}{\partial L_{1}} \\
\frac{\partial x}{\partial L_{2}} \\
\frac{\partial y}{\partial L_{2}}
\end{array}\right\}\left[\begin{array}{l}
\frac{\partial \psi_{i}}{\partial x} \\
\frac{\partial \psi_{i}}{\partial y}
\end{array}\right\}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\frac{\partial \psi_{i}}{\partial L_{2}} \\
\frac{\partial \psi_{i}}{\partial x} \\
\frac{\partial \psi_{i}}{\partial y}
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial x}{\partial L_{1}} & \frac{\partial y}{\partial L_{1}} \\
\frac{\partial x}{\partial L_{2}} & \frac{\partial y}{\partial L_{2}}
\end{array}\right]^{-1}\left\{\begin{array}{l}
\frac{\partial \psi_{i}}{\partial L_{1}} \\
\frac{\partial \psi_{i}}{\partial L_{2}}
\end{array}\right\}
$$

Noted

Obtuser angle normally should not be more than 160°
Acute angle should be more than 20° be than Aspect ration in rectangle element should be 1:20

Time dependent
$U(x, t)=U(x, t)=\sum_{j=1}^{n} u_{j}(t) \psi_{j}(x)$
(1) spatial approximation

- Solving time problem at particular time step.
(2) Time approximation \rightarrow How you relate the solution at given time step and next time step.

$$
\{4\} s \xrightarrow[\text { Small step. }]{ }\{4\} s+1
$$

$$
\frac{\text { Weak form }}{-\frac{\partial}{\partial x}\left(a \frac{\partial u}{\partial x}\right)+\frac{\partial^{2}}{\partial x^{2}}\left(b \frac{\partial^{2} u}{\partial x^{2}}\right)+c_{0} u+c_{1} \frac{\partial u}{\partial t}+c_{2} \frac{\partial^{2} u}{\partial t^{2}}=f(x, t) \text { time step }}
$$

subjected B.C.S

$$
\text { Lated } B \cdot C \cdot s \text { (1) } u(x, t) \text { or }-a \frac{\partial u(x, t)}{\partial x}+\frac{\partial}{\partial x}\left(b \frac{\partial^{2} u}{\partial x^{2}}\right)
$$

$$
\begin{aligned}
& =B C \text { (1) } \frac{\partial y}{\partial x}(x, t) \text { or } b \frac{\partial^{2} u}{\partial x^{2}} \\
& \text { i.tion } c_{2} u(x, 0
\end{aligned}
$$

(iii) initial condition $c_{2} u(x, 0)$ and $c_{2} \dot{u}(x, 0)+c_{1} \dot{u}(x, 0)$

$$
\begin{aligned}
& \frac{\text { semi -discrete FE for mutation }}{\int_{\Omega} w\left[-\frac{\partial}{\partial x}\left(a \frac{\partial u}{\partial x}\right)+\frac{\partial^{2}}{\partial x^{2}}\left(b \frac{\partial^{2} u}{\partial x^{2}}\right)+c_{0} u+c_{1} \frac{\partial u}{\partial t}+c_{2} \frac{\partial^{2} u}{\partial t^{2}}-f\right] d \Omega}=0 \\
& \frac{\text { differtiated twice }}{\Rightarrow} \int_{\Omega}\left(a \frac{\partial w}{\partial x} \frac{\partial u}{\partial x}+b \frac{\partial^{2} w}{\partial x^{2}} \frac{\partial^{2} u}{\partial x^{2}}+c_{0} w u+c_{1} w \frac{\partial u}{\partial t}+c_{2} w \frac{\partial^{2} u}{\partial t^{2}}-w f\right) d s \\
& -\hat{\theta}_{1} w\left(x_{A}\right)-\hat{Q}_{3} w\left(x_{B}\right)-\left.\hat{\theta}_{2}\left(-\frac{\partial w}{\partial x}\right)\right|_{x_{A}}-\left.\hat{\theta}_{4}\left(\frac{-\partial w}{\partial x}\right)\right|_{x_{\beta}}=0 \\
& \hat{\theta}_{1}=\left[-a \frac{\partial u}{\partial x}+\frac{\partial}{\partial x} \frac{\partial^{2} u}{\partial x^{2}}\right]_{x_{A}}, \hat{Q}_{2}=\left.\left(b \frac{\partial^{2} u}{\partial x^{2}}\right)\right|_{x_{A}}
\end{aligned}
$$

$$
\begin{aligned}
\hat{Q}_{3}= & {\left.\left[-a \frac{\partial u}{\partial x}+\frac{\partial}{\partial x} b\left(\frac{\partial^{2} u}{\partial x^{2}}\right)\right]_{x_{B}}, \hat{Q}_{u}=-\left(b \frac{b \partial^{2} u}{\partial x^{2}}\right)\right) } \\
u(x, t)= & \sum_{j=1}^{n} u_{j}(t) \psi_{i}(x) \\
0= & \int_{\Omega}\left\{\frac{d \psi_{i}}{d x} \sum_{j=1}^{n} \frac{d \psi_{j} u_{j}}{d x}+b \frac{\partial^{2} \psi_{i}}{\partial x^{2}}\left(\sum_{j=1}^{n}\left(\frac{\partial^{2} \psi_{j} u_{j}}{\partial x^{2}}\right)\right)\right. \\
& +c_{0} \psi_{i}\left(\sum_{j=1}^{n} \psi_{j} u_{j}\right)+c_{1} \psi_{i}\left(\sum_{j=1}^{n} \psi_{j}(x) u_{j}(t)\right) \\
& \left.+c_{2} \psi_{i}\left(\sum_{j=1}^{n} \psi_{j}(x) \ddot{u}_{j}(t)\right)-\psi_{i} f\right\} d \Omega \\
& -\hat{\theta}_{i}
\end{aligned}
$$

$$
\begin{aligned}
& 0=\sum_{j=1}^{n}\left[\left(k_{i j}^{\prime}+k_{i j}^{2}+M_{i j}^{\dot{C}_{i j}}\right) u_{j}+M_{i j}^{\prime} \frac{d u_{j}}{d t}+M_{i j}^{2} \frac{\partial^{2} u_{j}}{\partial t^{2}}-f\right. \\
& M_{i j}^{0}=\int c_{0} \psi_{i} \psi_{j} d x \quad M_{i j}=\int c_{1} \psi_{i} \psi_{j} d x \\
& M_{i j}^{2}=\int c_{2} \psi_{i} \psi_{j} d x \quad k_{i j}^{\prime}=\int a \frac{d \psi_{i}}{d x} \frac{d \psi_{j}}{d x} d x \\
& k_{i j}^{2}=\int b \frac{\partial^{2} \psi_{i}}{\partial x^{2}} \frac{\partial^{2} \psi_{j}}{\partial x^{2}} d x \quad F_{i}=\left(\psi_{i} f d x+\hat{Q}_{i}\right. \\
& {[M][\dot{u}]+[k][u]=\{f\} \quad \text { (Parabolic) }}
\end{aligned}
$$

Mass matrix

Time approximation

$$
\begin{aligned}
& \dot{u}=\frac{u_{2}-u_{1}}{t_{2}-t_{1}}\{\text { from FDM\} } \\
& \text { itu } u_{s+1}-u_{s}
\end{aligned}
$$

$$
\dot{u}_{s, s+1}=\frac{u_{s+1}-u_{s}}{D t}
$$

$\left.J\right|_{t_{6}} \Delta t \rightarrow$ time step assummed to be equal

$$
\begin{aligned}
& \left(y_{2}-y\right)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} *\left(x_{2}-x_{0}\right) \\
& \dot{u}_{s+1}-\dot{u}_{s, s+1}=\frac{\left(\dot{u}_{s+1}-\dot{u}_{s}\right)}{1}(1-\alpha) \\
& \dot{u}_{s, s+1}=\alpha \dot{u}_{s+1}+(1-\alpha) \dot{u}_{s}
\end{aligned}
$$

$$
\begin{equation*}
\alpha \dot{u}_{s+1}+(1-\alpha) \dot{u}_{s}=\frac{u_{s+1}-u_{s}}{\Delta t} \tag{1}
\end{equation*}
$$

α family of approximation

$$
\begin{align*}
& {[M]\{\dot{u}\}_{s}+[k]_{s}\{u\}_{s}=\{f\}_{s}} \tag{2}\\
& {[M]\{\dot{u}\}_{s+1}+[k]_{s+1}\{u\}_{s+1}=\{f\}_{s+1}} \tag{3}
\end{align*}
$$

Now premultiplying eq (1) by $[M] \Delta t$

$$
\begin{align*}
& \text { Now premultiplying eq(1) by } \tag{4}\\
& \Delta t[M] \alpha \dot{u}_{S+1}+\Delta t[M](1-\alpha) \dot{u}_{S}=[M]_{3} u_{s+1}-[M]\{u\}_{S}
\end{align*}
$$

$$
\begin{aligned}
& \text { From (3), (2) \& (4) } \\
& \Delta t \propto\left\{\left\{f q_{s+1}-[k]_{s+1}\{u\}_{s+1}\right\}+\Delta t(1-\alpha)\left\{\left\{f q_{s}-[k]_{s}\left\{u q_{s}\right\}\right.\right.\right. \\
& =[M]\{u\}_{s+1}-[M]\{u\}_{s} \\
& \Rightarrow[M]\{u\}_{s+1}+\Delta t \alpha[k]_{s+1}\{u\}_{s+1}=[M]\{4\}_{s}-\Delta t(1-\alpha)[k]_{s}\{u\}_{s} \\
& +\Delta t(1-\alpha)\left\{F q_{s}+\Delta t \alpha\{F\}_{s+1}\right. \\
& \Rightarrow[\hat{k}]\{4\{s+1=[\bar{k}]\{4\} s+\{\hat{f}\} s, s t)
\end{aligned}
$$

Algorithm

$$
\begin{aligned}
\frac{\text { Algorithm }}{([M]+\Delta t \alpha[k])\{W\}_{s+1}} & =([M]-\Delta t(1-\alpha)[k])\{W\}_{s} \\
& +\Delta t\left(\alpha\{F\}_{s+1}+(1-\alpha)\{F\}_{s}\right)
\end{aligned}
$$

$\{U\}_{s}=$ sulu l^{n} from initial cond n.
unstable sol ${ }^{n}$

Bounded

$\alpha=0 \rightarrow$ Forward difference scheme
$\alpha=1 \rightarrow$ Backward
$\alpha=\frac{1}{2} \rightarrow$ Crank - Nichole as
$\alpha=\frac{2}{3} \rightarrow$ Galerkin.
If $\alpha=0$, the above e^{n} reduces to
$[M] \int_{s-1}=\{F\}$ where $\{F\}$ includes terms only s.

$$
\{M\}_{s+1}=[M]^{-1}\{F\}
$$

$\int_{0} C \psi_{i} \psi_{j} d x \quad f \frac{C h}{6}\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right] \rightarrow$ consistent mass matrix

$$
\rightarrow\left[\begin{array}{cc}
k_{11} & 0 \\
0 & k_{22}
\end{array}\right] \ll \text { humped }
$$

Adv: - You need not do matrix inversion.
There are two methods for making. lumped matrix
(1) Row - sum lumping

$$
M_{11}=\sum_{i=1}^{N} \int_{0}^{\text {Row }} c \psi_{i} \psi_{j} d x=\int_{0}^{h} c \psi_{i} d x=\frac{c h}{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$\Delta t \leqslant \operatorname{tcn}=\frac{2}{(1-2 \alpha) \lambda}$, for all $\alpha<1 / 2$ timestep $\quad \lambda \rightarrow$ Max ${ }^{m}$ eigen value of the probtown
If $\Delta t>t$ ch \rightarrow The problem will bo unhoumitad
when $\alpha=0$, it is called explicit scrams. when $\alpha \neq 0$, it is called implicit chang.

$$
\begin{aligned}
& \lambda=\text { maigenvalue of the } k \text { ratio } \\
& \text { Of } \alpha=\frac{1}{2}, \Delta t=? \rightarrow a \operatorname{ascss} \Delta t
\end{aligned}
$$

$$
\begin{array}{lll}
\frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}}=0 & 0<x<1 \\
B \cdot C \cdot & u(0, t)=0 & \frac{\partial u}{\partial t}(1, t)=0 \\
I \cdot c \quad u(0,0)=0 & u(1,0)=1 \\
\frac{y u_{1}(s)=0}{} & b\left(u_{2}(s)=1\right.
\end{array}
$$

Let's consider $\alpha=\frac{1}{2}$
Mass matrix \rightarrow consistent mass matrix

$$
\begin{aligned}
& \int_{0}^{h} w\left(\frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}}\right) d x=\int_{0}^{h} \psi_{i} \psi_{j}\{\dot{u}\} d x-\int_{0}^{h} \frac{\partial^{2} u}{\partial x^{2}} w d x \\
& \text { pripgeget }[M]\{\dot{u}\}+[k][u]=[Q] \\
& \int_{0}^{h} \omega_{0} \frac{\partial u}{\partial t} d x=\int_{0}^{h} \psi_{i} \frac{d}{d t}\left(\Sigma u_{j} \psi_{j}\right) d x=\int_{0}^{h} \psi_{i} \psi_{j}\left\{u_{i}\right\} d x \\
& \text { we get } \frac{h}{6}\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\left\{\begin{array}{l}
\dot{u}_{1} \\
\dot{u}_{2}
\end{array}\right\}+\frac{1}{n}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right\}=\left\{\begin{array}{l}
Q_{1} \\
\theta_{2}
\end{array}\right\}
\end{aligned}
$$

One element model

If $\left\{F^{2}\right.$ does not change with time then

Given $\frac{\partial u}{\partial t}(1,0)=0 \Rightarrow \theta_{2}=0$

$$
\begin{aligned}
& =0 \Rightarrow \theta_{2}=0 \\
& 0 \quad\left[\begin{array}{l}
\frac{h}{3}-(1-\alpha) \frac{\Delta t}{h} \\
\frac{h}{6}+\frac{(1-\alpha) \Delta t}{h} \\
\hat{\mu}_{1}
\end{array}\right]\left[\begin{array}{l}
0 \\
\frac{h}{r}+\frac{(1-\alpha) \Delta t}{n}
\end{array}\right]+\left[\begin{array}{l}
\hat{\phi}_{1} \\
\theta_{1} \\
\theta_{2} \\
\hat{\phi}_{2}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left[\begin{array}{l}
\frac{h}{3}+\frac{\alpha \Delta t}{h} \frac{h}{6}-\frac{\alpha \Delta t}{h} \\
\frac{h}{6}-\frac{\alpha \Delta t}{h} \\
\frac{h}{3}
\end{array}\right]\left[\frac{\alpha \Delta t}{h}\right]\left[\mu_{1}\right]_{2}\right]_{s+1}=\frac{h}{6}+\frac{(1-\alpha) \Delta t}{n} \\
& \left(\frac{h}{3}+\frac{\alpha \Delta t}{h}\right)\left(h_{2}\right)_{s+1}=\frac{h}{3}-\frac{(1-\alpha) \Delta t}{h}\left(u_{2}\right)_{s} \\
& \text { if } \Delta t=0.05, \alpha=0.5
\end{aligned}
$$

Do using One quadratic element.

$$
\begin{aligned}
& {\left[\frac{h}{3}+\alpha \frac{\Delta t}{h} \frac{h}{6}-\frac{\alpha \Delta t}{h}\right]\left[u_{1}\right]=([M]+\alpha \Delta t[k])\{u\}_{s_{+1}}} \\
& ([m]-(1-\alpha) \Delta t[k])=\left[\begin{array}{ll}
\frac{h}{3}-(1-\alpha) \frac{\Delta t}{h} & \frac{h}{6}+\frac{(1-\alpha) \Delta t}{h} \\
\frac{h}{6}+\frac{(1-\alpha) \Delta t}{h} & \frac{h}{3}-\frac{(1-\alpha) \Delta t}{h}
\end{array}\right]
\end{aligned}
$$

Eigen value problems
$A \& B$ are differential operation:

$$
\begin{aligned}
& A(u)=\lambda B(u) \\
& -\frac{d^{2} u}{d x^{2}}=\lambda u
\end{aligned}
$$

DE

$$
\int^{A} \frac{x}{\partial t} \text { (from varualde sep pet med. }
$$

On substituting the sol ${ }^{n}$ in DE. ign value problem $^{\text {after }}$ after substituting the

$$
\int_{0}^{h} W\left(-\frac{d}{d x}\left(k A \frac{d U(x)}{d x}\right)-\lambda s(A \cup(x)) d x=0 \quad \text { sol }{ }^{n}\right.
$$ weighted integral form

Q. 2

$$
\rho A \frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial}{\partial x}\left(E A \frac{\partial u}{\partial x}\right)=q(x, t)<\text { hyperbolic }
$$

$s o l^{\prime \prime} \rightarrow u(x, t)=U(x) e^{-i \omega t} \quad i=\sqrt{-1}$
Substitute the sol in Differential eqn.

$$
\begin{aligned}
& \frac{\text { Substitute the sol in Differential eq. }}{\left[\rho A U(x)\left(+i^{2} \omega^{2}\right)-\frac{d}{d x} E A \frac{d u}{d x}\right] e^{-i \omega t}=0} \\
& -\rho A U(x) \omega^{2}-\frac{d}{d x} E A \frac{d U(x)}{d x}=0
\end{aligned}
$$

$\omega=$ natural frequency.
domains

$$
\begin{array}{ll}
-\frac{d^{2} u}{d x^{2}}+\frac{\partial u}{\partial t}=0 & 0 \leq x \leq 1 \\
u(0, t)=0 & ;\left.\left(\frac{\partial u}{\partial x}+u\right)\right|_{x=1}=0 \\
u(x, t)=v(x) e^{-\lambda t} & \\
u(0, t)=v(0) e^{-\lambda t}=0 \Rightarrow U(0)=0 \\
\binom{u(x)}{d x} & \Rightarrow v(x))\left.\right|_{x=1}=\left.0 \Rightarrow \frac{d u(x)}{d x}\right|_{x=1}+v(1)=0 \\
=v(x) e^{-\lambda t} & Q_{2}^{2}=-v_{3}=
\end{array}
$$

Substitute $u(x, t)=$ in $^{\text {in }} D E$

$$
\begin{aligned}
& -\frac{d^{2} u}{d x^{2}}-\lambda u=0 \\
& \int_{0}^{h} w\left(-\frac{d^{2} u}{d x^{2}}-\lambda u\right) d x=0 \\
& \int_{0}^{h} \frac{\partial w}{\partial x} \frac{\partial u}{\partial x} d x-\int_{0}^{h} w \lambda u d x=w \frac{d u}{d x}=0 \\
& \int_{0}^{h}\left(\frac{d \psi_{i}}{d x} \frac{d}{d x} \sum_{j=1}^{n} \psi_{j} u_{j}\right) d x-\lambda \int_{0}^{h} \psi_{i}\left(\sum_{j=1}^{n} u_{j} \psi_{j}\right) d x=Q_{i}
\end{aligned}
$$

$$
\left[k_{i j}\right]\left\{U_{j}\right\}-A\left[M_{F}\right]_{j} \lambda\left[M_{i j}\right]\left\{U_{j}\right\}=\left\{\theta_{i}\right\}
$$

Considering linear elements (minimum elements are $t_{6,}$

Condensed matrix directly for v_{2} and ω_{3}
determinant of the matrix below gives a and order eq n of ${ }^{\text {determinant of called characteristic equation. }}$

$$
\begin{aligned}
& \text { determinant of } \\
& {\left[\begin{array}{cc}
\frac{2}{h}-\frac{4 \lambda h}{6} & -\frac{1}{h}-\frac{\lambda h}{6} \\
\text { is called characteristic equal } \\
-\frac{1}{h}-\frac{\lambda h}{6} & \frac{1}{h}+1-\frac{2 \lambda h}{6}
\end{array}\right]\left[\begin{array}{l}
U_{2} \\
U_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{l}
U_{2}
\end{array}\right]=[0}
\end{aligned}
$$

$$
\left.\begin{array}{l}
-\frac{1}{h}-\frac{\lambda h}{6} \\
\frac{1}{h}+1-\frac{2 \lambda h}{6}
\end{array}\right]\left[\begin{array}{l}
U_{2} \\
U_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
-\frac{1}{h}-\frac{\lambda h}{6} & \frac{1}{h}+1-\frac{2 \lambda h}{6}
\end{array}\right]\left[\begin{array}{l}
U_{2} \\
\left(a_{11}-b_{11} \lambda\right)
\end{array}\left(a_{12}-b_{12} \lambda\right)=\left[\begin{array}{l}
0 \\
v_{3}
\end{array}\right]\right.
$$

For $\lambda=\lambda_{1}$ (1 st eigen value)

$$
\frac{1}{\left(a_{11}-b_{11} \lambda_{1}\right)} U_{2}^{(1)}+\left(a_{12}-b_{12} \lambda_{1}\right) V_{3}^{(1)}=0
$$

$$
\begin{aligned}
& {\left[\frac{1}{h}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]-\frac{\lambda h}{6}\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\right]\left[\begin{array}{l}
u_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
\theta_{1} \\
\theta_{2}
\end{array}\right] \text { in }} \\
& \left\{\frac{1}{h}\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right]-\frac{\lambda h}{6}\left[\begin{array}{ccc}
2 & 1 & 0 \\
1 & 4 & 1 \\
0 & 1 & 2
\end{array}\right]\right\}\left\{\begin{array}{l}
y_{1}^{7} \\
v_{2} \\
v_{3}
\end{array}\right\}=\left\{\begin{array}{l}
\theta_{1} \\
\theta_{2}^{1}+b_{1}^{2} \\
\theta_{2}^{2} 7_{2}^{1} \\
-v_{3}
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& 2.5033 v_{2}-2.3742 v_{3}=0 \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
& 2.5033 .0 \\
& 1.0 v_{2}-1.0544 v_{3}=0 \\
& 0.6881 v_{2}-0.7256 v_{3}=0
\end{aligned}
$$

$$
0.68810 .7256
$$

$$
\begin{aligned}
& 0 \\
& U^{\prime}(x)=0\left(1-\frac{x}{4}\right)+0.6881+\frac{x}{h} \\
& \left(1-\frac{x}{h}\right)+0
\end{aligned}
$$

$$
\begin{aligned}
& U^{\prime}(x)=0\left(1-\frac{x}{h}\right)+0.7256 \frac{x}{h} \\
& U^{\prime}(x)=0.6881\left(1-\frac{x}{h}\right)+0 .
\end{aligned}
$$

$$
\begin{aligned}
\frac{d u}{d t} & =\frac{u_{s+1}-u_{s}}{\Delta t} \\
& =u_{s+1}-u_{s}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\dot{u}_{s}}{(\alpha-D)}=\frac{\dot{u}_{s+1}-\dot{u}_{s}}{(1-0)} \\
& \frac{\dot{u}_{s+\alpha}}{}=\dot{u}_{s} \\
& \frac{u_{s+\alpha}-u_{s}}{\Delta t}=\dot{u}_{s}(1-\alpha)+\dot{u}_{s+1}(1-\alpha)+\dot{u}_{s+1}^{\alpha}
\end{aligned}
$$

$$
\begin{aligned}
& b=E I \\
& M=b \frac{d^{2} w}{d x^{2}} \\
& V=b \frac{d M}{d x} \\
& \frac{d V}{d x}=f(x)
\end{aligned}
$$

$$
\int_{\int e^{+1}}^{v} v\left[\frac{d^{2}}{d x^{2}} b \frac{d^{2} w}{d x^{2}}-f\right] d x=0
$$

θ_{1}, θ_{4} are the slopes Q_{1}, Q_{3} are stores $Q_{2} \& Q_{4}$ are the moments
xe
$v \rightarrow$ weight function

$$
\int_{x e}^{x e+1}\left[-\frac{d i}{}\right.
$$

$$
\begin{aligned}
& {\left[-\frac{d v}{d x} \frac{d}{d x} b \frac{w}{d x^{2}}-\left[v \frac{d}{d x} b \frac{d^{2} w}{d x^{2}}\right]_{x e}^{x e+1}=0\right.} \\
& +[]^{2+1}
\end{aligned}
$$

Coefficient of tuneigiglt function gives natural boundary condition
$W=$ here is field

$$
\xrightarrow[\text { arforce }]{N B C} \frac{d}{d x} b \frac{d^{2} w}{d x}
$$ variable

shearforce

$$
b \frac{d^{2} w}{d x^{2}}
$$

$$
\begin{aligned}
& \text { end } \left.\rightarrow \int_{x e}\left[b \frac{d^{2} v}{d x^{2}} \frac{d^{2} w}{d x^{2}}-v\right]\right] d x+\left[\frac{v d}{d x} \frac{d^{2} w}{d x^{2}}-\frac{d v}{d x} b d^{2} w\right]_{d x^{2}}^{e+1}=0 \\
& \text { *ex }\left[b \frac{d^{2} v}{d x^{2}} \frac{d^{2} w}{d x^{2}}-v\right] d x+\left[\frac{v d}{d x} \frac{b}{d} \frac{w}{d x^{2}}-\frac{d v}{d x} d d^{2} w\right]^{e+1}=0
\end{aligned}
$$

The weight f^{n} written in terms of field variable gives Essential boundary conditions

EEC V
Es

$$
\begin{array}{ll}
d x \\
Q_{1}=\left[\frac{d}{d x}\left(b \frac{d^{2} w}{d x^{2}}\right)\right]_{e} & Q_{2}=\left(b \frac{d^{2} w}{d x^{2}}\right)_{x^{2}} \\
Q_{3}=-\frac{d}{d x}\left(b \frac{d^{2} w}{d x^{2}}\right)_{x^{e}+1} \quad Q_{4}=-\left(b \frac{d^{2} w}{d x^{2}}\right)_{x^{e}+1}
\end{array}
$$

From strength of materials
For FGM

So, $Q_{2}=-Q_{3}$

$$
\begin{aligned}
& Q_{3}^{\prime}=\frac{d}{d x}\left(b \frac{d^{2} w}{d x^{2}}\right) x^{e}+1 \\
& Q_{4}^{\prime}=\frac{\left(b \frac{d^{2} w}{d x^{2}}\right) x^{e+1}}{1^{2}}
\end{aligned}
$$

$$
Q_{4}=-Q_{4}^{\prime}
$$

$$
\begin{aligned}
& Q_{4}^{\prime}=\frac{d x}{\left(b \frac{d^{2} w}{d x^{2}}\right) x^{e}} \\
& 0=\int_{x^{e}}^{x^{e+1}}\left(b \frac{d^{2} v}{d x^{2}} \frac{d^{2} w}{d x^{2}}-v f\right) d x-v\left(x^{e}\right) Q_{1}-\left.\left(-\frac{d v}{d x}\right)\right|_{x^{e}} ^{Q_{2}}
\end{aligned}
$$

weak form
Total no. of nodal variables at each node $=2\left(\begin{array}{c}\text { two degrees } \\ \text { or freedom } \\ \text { per node }\end{array}\right)$ Total no. of nodal variables $=4$ (for one linear)

$$
u_{1}, \theta_{1} \quad u_{2}, \theta_{2}+c_{2} x+c_{3} x^{2}+c_{4} x^{3}
$$

$$
\theta=-\frac{d w}{d x}
$$

$$
u=w
$$

$$
U_{1}=w\left(x_{e}\right), U_{2}=-\left.\frac{d w}{d x}\right|_{x=x^{e}}, W_{3}=w\left(x^{e+1}\right), U_{4}=\left(-\frac{d w}{d x}\right)_{x^{+}}
$$

Generalised displacements u, θ represented by v.

$$
\begin{aligned}
& \text { heneralesed displacements } \\
& U_{1}=c_{1}+c_{2}-x^{e}+c_{3}\left(x_{4}^{e}\right)^{2}+c_{4}\left(x^{e}\right)^{3} \\
& U_{2}=0-c_{2}-2 c_{3} x^{e}-3 c_{4}\left(x^{e}\right)^{2} \\
& U_{3}=c_{1}+c_{2} x^{e+1}+c_{3}\left(x^{e+1}\right)^{2}+c_{4}\left(x^{e+1}\right)^{3} \\
& U_{4}=0-c_{2}-2 c_{3} x^{e+1}-3 c_{4}\left(x^{e+1}\right)^{2} \\
& V_{\{ }=\left[\begin{array}{cccc}
1 & x^{e} & \left(x^{e}\right)^{2} & \left(x^{e}\right)^{3} \\
0 & -1 & -2 x^{e} & \left.-3 c_{4}\right)^{2} \\
1 & x^{e+1} & \left(x^{e+1}\right)^{2} & \left(x^{e+1}\right)^{3} \\
0 & -1 & -2 x^{e+1} & -3 x^{e+1}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right]
\end{aligned}
$$

$$
W(x)=v_{1} \phi_{1}+v_{2} \phi_{2}+v_{3} \phi_{3}+v_{4} \phi_{4}
$$

(Written in Local coordinates:

$$
\begin{gathered}
N(x)=v_{1} \phi_{1}+v_{2} \phi_{2} \\
\phi_{1}=1-3\left(\frac{\bar{x}}{h}\right)^{2}+2\left(\frac{\bar{x}}{h}\right)^{3} \\
\left.\bar{x} / 1-\frac{\bar{x}}{1}\right)^{2}
\end{gathered}
$$ No need to memorize,

$$
\phi_{2}=-\bar{x}\left(1-\frac{\bar{x}}{n}\right)^{2}
$$ will be given in the exams

$$
\phi_{2}=-3\left(\frac{x}{n}\right)^{2}-2\left(\frac{\pi}{n}\right)^{3}
$$

hermite cubic inter polation Functions

$$
\begin{aligned}
& \phi_{3}=-\bar{x}\left[\left(\frac{\bar{x}}{h}\right)^{2}-\left(\frac{\bar{x}}{h}\right)\right] \\
& \frac{d \phi_{1}}{d x}=-\frac{6}{h} \frac{\bar{x}}{h}\left(1-\frac{\bar{x}}{h}\right) \\
& \frac{d \phi_{2}}{d x}=-\left[1+3\left(\frac{\bar{x}}{h}\right)^{2}-4\left(\frac{x}{n}\right)\right] \\
& \frac{d \phi_{3}}{d x}=-\frac{d \phi_{1}}{d x} \quad, \frac{d \phi_{4}}{d x}=-\frac{\bar{x}}{h}\left[\frac{3 x}{h}-2\right]
\end{aligned}
$$

$$
U_{1}=w\left(x_{e}\right), \quad U_{2}=-\left.\frac{d w}{d x}\right|_{x=x^{e}}, U_{3}=w\left(x^{e+1}\right), U_{4}=\left(-\frac{d w}{d x}\right)_{x}
$$

Generalised displacements u, θ represented by v.

$$
\begin{aligned}
& \text { Generalised displacements } \\
& U_{1}=c_{1}+c_{2} \cdot x^{e}+c_{3}\left(x^{e}\right)^{2}+c_{4}\left(x^{e}\right)^{3} \\
& U_{2}=0-c_{2}-2 c_{3} x^{e}-3 c_{4}\left(x^{e}\right)^{2} \\
& U_{3}=c_{1}+c_{2} x^{e+1}+c_{3}\left(x^{e+1}\right)^{2}+c_{4}\left(x^{e+1}\right)^{3} \\
& U_{4}=0-c_{2}-2 c_{3} x^{e+1}-3 c_{4}\left(x^{e+1}\right)^{2} \\
& \left\{U_{\}}=\left[\begin{array}{cccc}
1 & x^{e} & \left(x^{e}\right)^{2} & \left(x^{e}\right)^{3} \\
0 & -1 & -2 x^{e} & \left.-3 c_{4} x^{e}\right)^{2} \\
1 & x^{e+1} & \left(x^{e+1}\right)^{2} & \left(x^{e+1}\right)^{3} \\
0 & -1 & -2 x^{e+1} & -3 x^{e+1}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right]\right.
\end{aligned}
$$

$$
W(x)=v_{1} \phi_{1}+v_{2} \phi_{2}+v_{3} \phi_{3}+v_{4} \phi_{4}
$$

$$
\begin{aligned}
& W(x)=v_{1} \phi_{1}+v_{2} \psi_{2} \\
& \phi_{1}=1-3\left(\frac{\bar{x}}{h}\right)^{2}+2\left(\frac{\bar{x}}{h}\right)^{3}
\end{aligned}
$$

(Written in Local coordinates. Ho need to memorize,

$$
\phi_{2}=-\bar{x}\left(1-\frac{\bar{x}}{h}\right)^{2}
$$ will be given in the exams

$$
\phi_{2}=-x\left(\frac{x}{n}\right)^{2}-2\left(\frac{x}{n}\right)^{3}
$$

hermite cubic interpolation Functions

$$
\begin{aligned}
& \phi_{3}=-\bar{x}\left[\left(\frac{x}{h}\right)^{2}-\left(\frac{\bar{x}}{h}\right)\right] \\
& \left.\left.\phi_{4}=-\frac{6}{h} \frac{\bar{x}}{h} \right\rvert\, 1-\frac{\bar{x}}{h}\right) \\
& \left.\left.\frac{d \phi_{1}}{d x}=-\frac{(\bar{x}}{h}\right)^{2}-4\left(\frac{\bar{x}}{h}\right)\right] \\
& \frac{d \phi_{2}}{d x}=-\left[1+\frac{d \phi_{4}}{d x}=-\frac{\bar{x}}{h}\left[\frac{3 x}{h}-2\right]\right. \\
& \frac{d \phi_{3}}{d x}=-\frac{d \phi_{1}}{d x} \quad,
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{\frac{\bar{x}}{h}} \frac{b d^{2} \phi_{i}}{d x^{2}} \sum_{j=1}^{4} \frac{d^{2}\left(u_{j} \phi_{j}\right)}{d x^{2}} d x-\int_{0}^{h} \phi_{i} f d x=\left\{f^{n}\right. \\
& {[k]\{u\}=\left\{f^{2}+\left\{Q_{\}}\right.\right.} \\
& {[k]=\frac{2 b}{h^{3}}\left[\begin{array}{cccc}
6 & -3 h & -6 & -3 h \\
-3 h & 2 h^{2} & 3 h & h^{2} \\
-6 & 3 h & 6 & 3 h \\
-3 h & 3 h & 2 h^{2}
\end{array}\right] \quad\left\{u^{2}=\left\{\begin{array}{l}
u_{1} \rightarrow \text { displace- } \\
u_{2} \rightarrow \text { slope } \\
u_{3} \\
u_{4}
\end{array}\right\} \rightarrow\right. \text { shopper }} \\
& u_{1} \rightarrow \text { sheartorce }
\end{aligned}
$$

$\left\{F_{1}=\frac{f h}{12}\left\{\begin{array}{c}6 \\ -h\end{array}\right\}+\left\{\begin{array}{c}Q_{1} \rightarrow \text { shear force } \\ Q_{2} \rightarrow \text { bending moment }\end{array}\right.\right.$
${ }_{3} \rightarrow$ Shear force.

$$
\Rightarrow\{k\}\{u\}=\{F\}
$$

Assembly
Two linear elements

For one ebment
For 2 -Doff

Kassembly

$$
\begin{aligned}
& \text { For } 1 \text { - oOF } \\
& \begin{array}{l|l}
\text { For } & 1-D O F \\
\left.\begin{array}{l|l}
k_{11} & k_{12} \\
k_{21} & k_{22}
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \quad\left[\begin{array}{ccc}
k_{11} & k_{12}^{2} & 0 \\
k_{21}^{2} & k_{22}^{\prime}+k_{11}^{2} & k_{12}^{2} \\
0 & k_{21}^{2} & k_{22}^{2}
\end{array}\right]
\end{array}
\end{aligned}
$$

Q
EI \rightarrow frictional rigidity
$\frac{2 b}{h}\left(6 U_{3}+3 h U_{4}\right)=-P$
$\left(3 v_{3}+2 h^{2} U_{4}\right)=0$

$$
\begin{aligned}
& 6 v_{3}+3 h\left(\frac{g}{2 h}\right. \\
& \left(6-\frac{g}{2}\right)^{3}=-\frac{p h^{3}}{2 b} \\
& v_{3}=-\frac{p h}{3 b}
\end{aligned}
$$

Post processing
Difference blw truss and Frame Truss is always a 2 force member. Frame always has some moment.

$$
\begin{aligned}
& \xrightarrow[h]{\longrightarrow} \\
& U_{1}=0, U_{2}=0 \\
& \frac{2 b}{h^{3}}\left[\begin{array}{cccc}
6 & -3 h & -6 & -3 h^{2} \\
-3 h & 2 h^{2} & 3 h & h^{2} \\
-6 & 3 h & 6 & 3 h \\
-3 h & h^{2} & 3 h & 2 h^{2}
\end{array}\right]\left[\begin{array}{l}
\phi_{1}^{2} \\
y_{2}^{2} \\
u_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
Q_{1} \\
Q_{2} \\
Q_{3} \\
Q_{4}
\end{array}\right] .
\end{aligned}
$$

Generalised problem generalised loads

$$
[k]\left[\mu^{3}=\frac{2 E I}{h^{3}}\left[\begin{array}{cccccc}
\mu & 0 & 0 & -\mu & 0 & 0 \\
0 & 6 & -3 h & 0 & -6 & -3 h \\
0 & -3 h & 2 h^{2} & 0 & 3 h & h^{2} \\
-\mu & 0 & 0 & \mu & 0 & 0 \\
0 & -6 & 3 h & 0 & 6 & 3 h \\
0 & -3 h & h^{2} & 0 & 3 h & 2 h
\end{array}\right]\left[\begin{array}{l}
U_{1} \\
v_{2} \\
u_{3} \\
u_{4} \\
u_{5}
\end{array}\right]\right.
$$

$$
\mu=\frac{A h^{2}}{2 I}
$$

These eq ns are only for conditions where deflection arenery large.

Two nodal element are due to the axial loading

$$
\begin{aligned}
& \text { the axial } \\
& +\left\{\left.\begin{array}{l}
\theta_{1} \\
\theta_{2} \\
\theta_{3} \\
Q_{4} \\
Q_{5} \\
Q_{6}
\end{array} \right\rvert\, \begin{array}{l}
1111
\end{array}\right.
\end{aligned}
$$

For two elements

$$
\begin{aligned}
& \begin{array}{|l|l|}
\hline k_{11} & k_{12}^{2} \\
\hline k_{21} & k_{21} x_{1} \\
\hline
\end{array}
\end{aligned}
$$

$$
s u^{2}=\left\{\begin{array}{c}
u_{1} \\
w_{1} \\
\theta_{1} \\
u_{2} \\
w_{2} \\
\theta_{2}
\end{array}\right\} \quad \begin{aligned}
& 2\}
\end{aligned}=\left\{\begin{array}{l}
N_{1} \\
v_{1} \\
M_{1} \\
N_{2} \\
v_{2} \\
M_{2}
\end{array}\right\}
$$

$y^{y} r^{y}$

$$
\begin{aligned}
& {\left[\begin{array}{l}
\bar{u} \\
\bar{v} \\
\bar{w}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \alpha & \sin \alpha & 0 \\
-\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right] \Rightarrow\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]\left[\begin{array}{l}
\bar{u} \\
\bar{v}
\end{array}\right]} \\
& \left\{\begin{array}{l}
u \\
\bar{u} \\
\bar{v}
\end{array}\right]=\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right] \Rightarrow \text { displacements }
\end{aligned}
$$

$$
\begin{aligned}
& \{\bar{u}\}=[-\sin \alpha \\
& \{\bar{v}\}=[T]\{u\} \rightarrow \text { displacemer } \\
& \{\bar{u}\}=[T]^{\top}\{u\} \\
& \{u\}=[T]^{-1}\{\bar{u}\} \rightarrow \text { forces } \\
& \{\bar{F}\}=[T]\{F\} \rightarrow
\end{aligned}
$$

$[\bar{K}][\bar{u}]=[\bar{F}]$

$$
\begin{aligned}
& {[\bar{k}][\bar{u}]=[F]} \\
& {[\bar{k}][T][u]=[T][F]}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{k}] \\
& \frac{[\bar{k}][T][u]}{}=[T][F] \\
& \frac{[T]^{\top}[k][T]}{[k]\{u\}}=\{4\}=[T]^{-1}[T]\{F\}
\end{aligned}
$$

$$
\frac{[k]}{[k]\{u\}}=\{F\}
$$

α is always measured from x axis in the counter clockwise direction.

$\alpha=90^{\circ} \longrightarrow$
Do not write $\alpha=-60^{\circ}$

$$
\begin{aligned}
& \operatorname{fox}_{\text {axial }}^{\text {and }^{2}}<\psi_{1}=\left(1-\frac{\bar{x}}{n}\right) \\
& \psi_{1}\left(x_{0}\right)=\left(1-\frac{x_{0}}{h}\right) \\
& \text { For lias }_{\text {added }} \leftarrow \psi_{2}\left(x_{0}\right)=\frac{x_{0}}{h} \\
& (\theta)_{0}=Q_{0}\left(1-\frac{x_{0}}{h}\right) \\
& Q_{0}=Q_{0} \frac{x_{0}}{h}
\end{aligned}
$$

$$
\begin{aligned}
f_{i} & =\int q(x) \psi_{i} d x \\
& =\int Q_{0} \delta\left(x-x_{0}\right) \psi_{i} d x \\
& =Q_{0} \psi_{i}\left(x_{0}\right)
\end{aligned}
$$

K. no sir's notation he wits It he writes
it means Load 1.29 in left direction.

$$
\begin{aligned}
& \phi_{1}=1-3\left(\frac{\bar{x}}{n}\right)^{2}+2\left(\frac{\bar{x}}{n}\right)^{2}=0.5 \\
& \phi_{2}=-\bar{x}\left(1-\frac{\bar{x}}{n}\right)=-90 * 0.5^{2}=-22.5 \\
& \phi_{1}=\phi_{0} \phi_{2}=-22.5(-3.2 p)=72 p
\end{aligned}
$$

$$
\begin{aligned}
& \bar{Q}_{4}=0 \\
& \bar{Q}_{5}=\frac{1}{2} \frac{P}{7_{2}} 144=-1 P \\
& \bar{Q}_{6}=-\frac{1}{12} * \frac{P}{172} *(144)^{2}=-24 P \\
& {\left[\begin{array}{l}
Q_{4} \\
Q_{5}
\end{array}\right]=\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]\left[\begin{array}{l}
\bar{Q}_{4} \\
\bar{Q}_{5}
\end{array}\right]} \\
& Q_{4}=\cos \alpha \bar{Q}_{4}-\sin \alpha \hat{Q}^{(1)} \bar{Q}_{5}^{(-P)}=P \\
& Q_{5}=\sin \alpha \bar{Q}_{4}^{0}+\cos \alpha \bar{Q}_{0}=0 \\
& Q_{6}=-24 P
\end{aligned}
$$

$$
\left[\begin{array}{l}
Q_{1} \\
\theta_{2}
\end{array}\right]=\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]\left[\begin{array}{l}
\bar{Q}_{1} \\
\bar{Q}_{2}
\end{array}\right]
$$

$$
\begin{gathered}
Q_{1}=\frac{\sin \alpha}{Q_{1} \cos \alpha-\sin \alpha \bar{Q}_{2}} \\
=0.8(-1.2)-0.6(-1.6) \\
Q_{1}=0
\end{gathered}
$$

2nd demunt

$$
728 \Rightarrow \overline{23}
$$

夜立

$$
\begin{aligned}
& \theta_{2}=0.6(-1.2) p+0.8(-1.6) p \\
& \theta_{2}=-2 p
\end{aligned}
$$

$$
[
$$

k^{\prime}
Post Processing
$\begin{array}{ll}1 & 1 \\ f & \theta\end{array}$

$$
\begin{aligned}
& f_{s}=\frac{d}{d x} E I \frac{d^{2} w}{d x^{2}} \equiv E I \frac{d^{3} w}{d x^{3}} \equiv E I \sum_{j=1}^{4} \frac{d^{3} \phi_{j}}{d x^{3}} \times \bar{u}_{j} \\
& \bar{u}_{i}
\end{aligned}
$$

Bending moment

$$
\begin{aligned}
f_{6} & =E I \frac{d^{2} w}{d x^{2}} \\
& =E I \sum_{j=1}^{4}\left(\frac{d^{2} \phi_{j}}{d x^{2}} \times v_{j}\right) \\
\sigma_{x x} & =\frac{M_{2} y}{I_{z}}
\end{aligned}
$$

* Notes:-
(1) Anything axial \rightarrow Lagrangian interpolation f^{n}
(2) Any thing transverse \rightarrow Hermite interpolation f^{n}

$$
\begin{aligned}
\pi & =\int_{0}^{h} \frac{1}{2} \sigma \in A d x-P \delta_{2}-Q \delta_{1} \\
& =\int_{0}^{h} \frac{1}{2}(E E) E A d x-P \delta_{2}+Q \delta_{1} \\
& =\frac{1}{2} E A \int_{0}^{h} E^{2} d x-P \delta_{2}+Q \delta_{1} \\
& =\frac{1}{2} E A \int_{0}^{h}\left(\frac{d u}{d x}\right)^{2}-P \delta_{2}+Q \delta_{1} \\
& =\frac{1}{2} E A \int_{0}^{h}\left(\frac{d}{d x}\left(V_{1} \psi_{1}+U_{2} \psi_{2}\right)^{2} d x-P \delta_{2}+Q \delta_{1}=0\right. \\
\frac{\partial \pi}{\partial V_{1}} & =E A \int_{0}^{\frac{d \psi_{1}}{d x}\left(\frac{d}{d x}\left(\psi_{1} N_{1}+\psi_{2} V_{2}\right)\right) d x+\theta=0} \\
\frac{\partial \pi}{\partial v_{2}} & =E A \int_{0}^{h} \frac{d \psi_{2}}{d x}\left(\frac{d}{d x}\left(\psi_{1} V_{1}+\psi_{2} V_{2}\right) d x-P=0\right.
\end{aligned}
$$

$$
\frac{E A}{h}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
U_{2}
\end{array}\right\}=\left\{\begin{array}{c}
-\theta \\
p
\end{array}\right\}
$$

Internal st rain energy

$$
\begin{aligned}
d U= & \sigma_{x} d y d z d\left(u+\frac{\partial u}{\partial x} d x\right) \\
& -\sigma_{x} d y d z d u
\end{aligned}
$$

$$
d U=\sigma_{x}\left(\alpha \epsilon_{x}\right) \frac{d x d y d z}{\text { Volume }}
$$

To tail strain energy $=\int_{0}^{\epsilon_{x}} \sigma_{x} d \epsilon_{x} d v+\int_{0}^{t_{y}} \sigma_{y} d \epsilon_{y} d v$

$$
\begin{aligned}
& \text { a tab strain energy }=\int_{0}^{t_{2}} \sigma_{x y}^{1} f_{0}^{1} f_{0}^{1} \\
& +\int_{0}^{1} \sigma_{z}\left(d E_{z}\right) d v+\int_{0}^{1} \tau_{x y} d \gamma_{x y} d v+\int_{x z} d \gamma_{x z} d v
\end{aligned}
$$

$$
+\int_{0}^{0} 2 y z z d x x z d v=u
$$

$U_{0}=$ strain energy/unit volume

(A) \rightarrow Modulus of resiliance

$$
\begin{aligned}
&(A)+(B) \rightarrow \text { Modulus of toughness } \\
& d U_{0}= \sigma_{x} d \epsilon_{x}+\sigma_{y} d \epsilon_{y}+\sigma_{z} d \epsilon_{z}+\sigma_{x z} d \gamma_{x z}+\tau_{x y} d d_{x y}+\lambda_{y z} d d_{y z} \\
& d V_{0}= \frac{\partial U_{0}}{\partial E_{x}} d E_{x}+\frac{\partial U_{0}}{\partial t_{y}} d t_{y}+\frac{\partial U_{0}}{\partial t_{z}} d \epsilon_{z}+\frac{\partial U_{0}}{\partial \gamma_{x z}} d \partial_{x z}^{2} \\
&+\frac{\partial U_{0}}{\partial \gamma_{x y}} d \partial_{x y}+\frac{\partial U_{0}}{\partial \gamma_{y z}} d \gamma_{y z} \\
& \text { above two equations has the property that }
\end{aligned}
$$

On comparing above two equations $\sigma_{x}=\frac{\partial U_{0}}{\partial x} \rightarrow$ strain energy density has the property that gives the corresponding stress component.

$$
\left\{\frac{\partial U_{0}}{\partial t}\right\}=\{G\}=[c]\{\epsilon\}
$$

Integrating wort $d \in, U_{0}=\frac{1}{2}\{\epsilon\}^{\top}[C]\{\in\}$

$$
U=\frac{1}{2} \int_{V}\{E\}^{\top}[C]\{\in\} d V \rightarrow \text { strain energy }
$$

External force effect

Totat strain energ $(\pi)=\frac{1}{2} \int_{V}\{\epsilon\}^{T}[c]\{\epsilon\} d v$

$$
\left.\left.\left.\begin{array}{l}
\left.\operatorname{energ}(\pi)=\frac{1}{2}\right\}_{v}\{4\}^{T}\{\times\} d v-\int_{S}\{u\}^{T}\{p\} d s \\
-(E x] \quad\left[\frac{\partial}{\partial x}\right.
\end{array}\right]\right\} u\right\}
$$

$$
\left\{\begin{array}{l}
\epsilon_{x} \\
\epsilon_{y} \\
\gamma_{x y}
\end{array}\right\}=\left[\begin{array}{cccc:c}
\frac{\gamma \psi_{1}}{\partial x} & 0 & \frac{\partial \psi_{2}}{\partial x} & 0 & \frac{\partial \psi_{2}}{\partial x} \\
0 & \frac{\partial \psi_{1}}{\partial y} & 0 & \frac{\partial y}{\partial y} & 0 \\
\frac{\partial \psi_{3}}{\partial y} \\
\frac{\partial \psi_{1}}{\partial y} & \frac{\partial \psi_{1}}{\partial x} & \frac{\partial \psi_{2}}{\partial y} & \frac{\partial \psi_{2}}{\partial x} & \frac{\partial \psi_{3}}{\partial x} \\
\frac{\partial \psi_{3}}{\partial x}
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
v_{1} \\
u_{2} \\
v_{2} \\
u_{3} \\
v_{3}
\end{array}\right\}
$$

$B \rightarrow$ Interpolation operator matrix \uparrow $\{E\}=[B]\{d\} \quad\left\{d\left\{\rightarrow \begin{array}{l}\text { specifically nodal } \\ \text { value who se values }\end{array}\right.\right.$ are constant

$$
\{u\}=\{\psi\}\{d\}
$$

$\{u\} \rightarrow$ matrix

$$
\begin{aligned}
& w=-\int_{v}\{u\}^{\top}\{x\} d v-\int_{s}\{u\}^{T}\{p\} d s \\
& \int_{v}\left(x_{b} u+y_{b} v+z_{b} w\right) d v \int_{s}^{\downarrow}\left(x_{s} u+y_{s} v+z_{s} w\right) d s
\end{aligned}
$$

$$
\begin{aligned}
\pi= & \frac{1}{2} \int_{V}\{d\}^{\top}\left[B J^{\top}[C][B]\{d\} d V\right. \\
& -\int_{V}\{d\}^{\top}\{\psi\}^{\top}\{x\} d V-\int_{V}\{d\}^{\top}\{\Psi\}^{\top}\{P\} d s
\end{aligned}
$$

The first variation of π must be zero for all equilibrium conditions.
\rightarrow Principle of stationery potential energy.

$$
\begin{aligned}
& \rightarrow \text { Principle of state }=\{\delta d\}^{\top}\left[\int_{V}[B]^{\top}[C][B] d v\{d\}-\int_{V}[\psi]^{\top}\{x\} d v\right. \\
& \left.\delta \pi]^{\top}\{P\} d s\right]=0 \\
& {\left[\int_{V}[B]^{\top}[C][B] d v\right]\{d\}=\left[\int_{V}[\psi]^{\top}\{x\} d v+\mid[\psi]^{\top}\{P\} d s\right]} \\
& k_{\text {matrix }}\left[\begin{array}{l}
\text { P }
\end{array}\right]
\end{aligned}
$$

\rightarrow This term will come, if at any node external loads are given

17/4/18
Plane stress problem

$$
k_{i j}=\prod_{\uparrow S^{L}} \int_{\text {thickness }} B^{T C B} \frac{d x d y}{\text { Area }}
$$

thickness

$$
[c]=\left[\begin{array}{ccc}
c_{11} & c_{12} & 0 \\
c_{21} & c_{22} & 0 \\
0 & 0 & c_{66}
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
\frac{d \psi_{1}}{d x} & 0 & \frac{d \psi_{1}}{d y} \\
0 & \frac{d \psi_{1}}{d y} & \frac{d \psi_{1}}{d x}
\end{array}\right]\left[\begin{array}{lll}
c_{11} & c_{2} & 0 \\
c_{21} & c_{22} & 0 \\
0 & 0 & c_{66}
\end{array}\right]\left[\begin{array}{cc}
\frac{d \psi_{1}}{d x} & 0 \\
0 & \frac{d \psi_{1}}{d y} \\
\frac{d \psi_{1}}{d y} & \frac{d \psi_{1}}{d x}
\end{array}\right]} \\
& {\left[\begin{array}{lll}
\frac{d \psi_{1}}{d x} & 0 & \frac{d \psi_{1}}{d y} \\
0 & \frac{d \psi_{1}}{d y} & \frac{d \psi_{1}}{d x}
\end{array}\right]\left[\begin{array}{cc}
c_{11} \frac{d \psi_{1}}{d x} & c_{12} \frac{d \psi_{1}}{d y} \\
c_{21} \frac{d \psi_{1}}{d x} & c_{22} \frac{d \psi_{1}}{d y} \\
c_{66} \frac{d \psi_{1}}{d y} & c_{66} \frac{d \psi_{1}}{d x}
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& c_{11}\left(\frac{d \psi_{1}}{d x}\right) \\
& c_{11} \frac{d \psi_{1}}{d x} \cdot \frac{d \psi_{1}}{d x}+c_{66} \frac{d \psi_{1}}{d y} \frac{d \psi_{1}}{d y} \\
& c_{12} \frac{d \psi_{1}}{d y} \\
& c_{21} \frac{d \psi_{1}}{d x} \frac{d \psi_{1}}{d y}+c_{66} \frac{d \psi_{1}}{d y} \frac{d \psi_{1}}{d x}
\end{aligned}
$$

$$
\begin{array}{r}
c_{12} \frac{d \psi_{1}}{d y} \frac{d \psi_{1}}{d x}+c_{66} \frac{d \psi_{1}}{d x} \frac{d \psi_{1}}{d y} \\
c_{22} \frac{d \psi_{1}}{d y} \frac{d \psi_{1}}{d y}+c_{66} \frac{d \psi_{1} 1}{d x} \frac{d \psi_{1}}{d x} \\
d x d y=
\end{array}
$$

$$
\left[\begin{array}{ll}
k_{11} & k_{12} \\
k_{21} & k_{22}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
v_{1}
\end{array}\right]=\left\{\begin{array}{c}
-\frac{f_{0} h}{2} \\
-\frac{f_{0} h}{2}
\end{array}\right\} x\left\{\begin{array}{c}
0 \\
-p
\end{array}\right\}
$$

For triangular element

$$
\begin{aligned}
& \psi_{i}=\frac{1}{2 A}\left(\alpha_{i}+\beta_{i} x+\gamma_{i} y\right) \\
& \frac{\partial \psi_{1}}{2 x}=\frac{\beta_{i}}{2 A} \quad \frac{\psi_{1}}{\partial y}=\frac{8_{i}}{2 A} \\
& h \int_{A} C_{11} \frac{d \psi_{1}}{d x} \frac{d \psi_{1}}{d x} d x d y=C_{11} \frac{\beta_{1} h}{4 A}
\end{aligned}
$$

$$
\begin{aligned}
& K=\left[\begin{array}{cc}
\frac{h c_{11} \beta_{1}^{2}}{4 A}+c_{66} \frac{h \beta_{1}^{2}}{4 A} & \frac{c_{12} h \beta_{1}}{4 A}+c_{66} \frac{\beta_{1} \beta_{1} h}{4 A} \\
\frac{c_{21} h_{1} \beta_{1}}{4 A}+\frac{c_{66} \beta_{1}^{4 h}}{4 A} & h_{22}^{c_{22}} \frac{d_{1}^{2}}{4 A}+\frac{c_{66} \beta_{1}^{2} h}{4 A}
\end{array}\right] \\
& K=\frac{h}{4 A}\left[\begin{array}{ll}
\left(c_{11} \beta_{1}^{2}+c_{66} h_{1}^{2}\right) & \left.\left(c_{12}+c_{60}\right) \beta_{1}\right)_{1} \\
\left(c_{12}+c_{66}\right)_{12}^{21} & \left(c_{22} h_{1}^{2}+c_{66} \beta_{1}^{2}\right.
\end{array}\right]
\end{aligned}
$$

