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operation of a reactor with a graphite moderator it is necessary
to carry out a controlled release of Wigner energy at intervals.
The release is potentially the more dangerous the lower the working
temperature of the reactor, and must be carried out according
to a carefully thought out schedule.

An alternative procedure proposed depends on the fact that
the major part of the Wigner energy is stored in those parts of the
graphite nearest the fuel rods. If, then, the fuel rods are sur-
rounded by graphite tubes, and these are removed from the reactor
with the rods when fuel reprocessing is due, the dangerous graphite
can be annealed outside the reactor or replaced by fresh graphite.

Transport Mean Free Path

The amount of moderator needed round each fuel element in a
heterogeneous reactor depends on the distance travelled by a
neutron while being slowed down. We have already calculated
the number of collisions involved, and the mean free path between
them is the inverse of the macroscopic scattering cross-section,
but this only tells us the distance travelled measured along the
zig-zag path, and we require the direct distance between start
and finish. We obtained a formula for this on page 103, but must
now generalize it in terms of the transport mean free path.

In calculating the root mean square distance travelled by a
particle executing random motion, we assumed random collisions
terminating the free paths, and isotropic scattering in the laboratory
system of reference at collisions, whereas we now know it to be
isotropic in the centre of mass system for the case we are in-
terested in. This means that, instead of all evidence of the direction
of motion before collision being lost in each collision, there is a
tendency for the initial motion to persist in the subsequent
motion: there is a preponderance of forward scattering. The mean
free path that is effective in making a particle wander away from
its starting point is longer than 4,. We shall assume that its value
may be calculated by allowing for the contribution to continued
motion in the direction of the free path that was terminated by
the collision from free paths following the collision. The value for
the transport mean free path obtained in this way is the same as
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that obtained from a formal mathematical proof along the lines of
the one we used in Chapter 6 for isotropic scattering.*

We simplify the argument by treating all free paths as equal
to the mean free path 1, Consider a particle starting at O in
Fig. 8.9 and travelling along the X axis. It collides after a distance

~ J,, and sets off at an inclination ¢ to its former direction, again

colliding after a distance 4,. The contribution from the second free

- path, to motion in the direction of the first, is A, cos 6, and the

average contribution from all such particles is 4, cos 6. The second
collision occurs at a distance 4, from the vertex of a cone of

- semi-vertical angle 0, on the surface of the cone, the axis of the

cone being the direction of motion before the first collision, and

Fig. 8.9.

- the vertex at the collision. A similar construction gives the third

collision. The contribution from the third free path to the transport
mean free path is got by first projecting on to the axis of the
second cone, and then projecting on to the axis of the first. It is

therefore 2, (cos 0)2. The contribution from the fourth free path
is A, (cos 0)3, and so on. We therefore find

Ay = A1 + cos 6 + (cos )2 + (cos 6) + ...}
A

—l—cose

* Littler, D. J. and Raffle, J. F. An Introduction to Reactor Physics,
Appendix I. 1957, London; Pergamon.
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cos  must be calculated from the fact that scattering is isotropic
in the centre of mass system, that is, referring to Fig. 8.2, all
directions in space are equally probable for u — Avy/(1 4+ 4).
As we have noted previously, this means that the probability
of the scattering angle in the centre of mass system lying between
¢ and ¢ + 06 is Jsin ¢d¢. Again referring to Fig. 8.2, we see that
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The integration is straightforward, and gives cos f = 2/(34),
whence 4, = A,/[1 — 2/(34)].

This is the correct value of 1, to use in the formula for the
diffusion coefficient derived on page 104, D = 3vi,. We have to
be careful, however, about using it in the formula for the root mean

square distance travelled derived on page 103, R? = 2xJ2. Tt is
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incorrect to substitute A2 for 2. This is because one 1 in the

~ formula has to do with the rate of progress per collision, and the

other with movement along the zig-zag path; if we differentiate
the formula with respect to time, one 2 has to do with the #rack
pelocity. Explicitly, if # is the number of collisions in time 7, we
have # = v/, whence R? = 207 — 6Dx, since D — 30 In gen-
eralizing, we must use 4, for 1 in # = v7/2, and 1, for 2in D = vi.

- The generalization of R2 = 2172 will therefore be R2 = 2ni, 1,

in order to retain R2 = 6Dr.
We can now define the slowing down length L, in terms of

~ the root mean square distance travelled between the birth of a

~ fission neutron and its thermalization. We let L2 = %R—2 == Ml A A

= Dz.It is convenient to have no factor 6 present when L, is
associated with D. n, is now the number of collisions to thermalize,

~ which we calculated.

Slowing Down Formulae

The conclusions reached in the elementary theory of the moder-
ator presented in this chapter will now be summarized.
The energy of a neutron after collision with a moderator atom

- of atomic weight 4 is

A%+ 24 cos ¢ + 1
A+

“where E, is the energy before collision, and ¢ the angle through

~which the neutron is scattered in the centre of mass system (6
being the angle through which it is scattered in the laboratory
system). The minimum value of E is

A4 — 1\2
A+ i)

By = Eo(

- The probability of the neutron being in a range of energy dE,

within the range «E, to E, which includes all the neutrons, is

independent of the energy after collision and equal to

OE[{E,(1 — «)}, as shown in Fig. 8.3.

- The lethargy is defined as & = log, (E,/E) where E, is the

energy of a fission neutron. The average increase of lethargy
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