(4) thing eqn 2.4, we get 5= 1.48 (trample 2.1)

Using of 2.8, we get

8= 1.151 (ths-put) + 1.151 log (1688 due)

· % evere = 0.479%

Using St=10hou,

$$\frac{t_{0}+6t}{6t} = \frac{72+10}{10} = 8.2$$

from the graph, at st=10 wa, pws=1859psi

. It hardly makes any difference

ASSUMPTION: Infinite acting resolvable = 1233 ft

2-2) We have, pur = Pi - 162.6 q Bu log (totot)

det the pressure at one point de pus, and pressure after one cycle de pws2

=) pws = (p; - mlogtp) + logst m

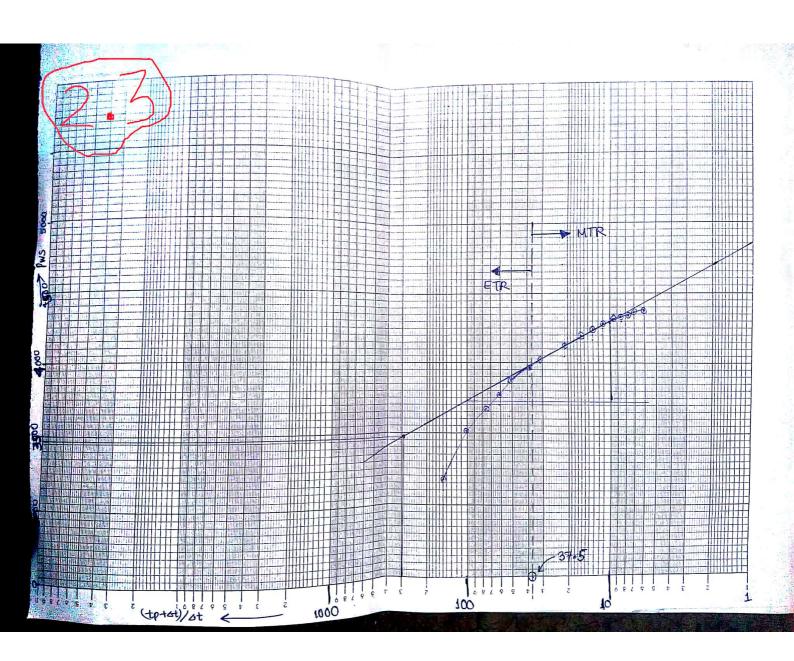
.. We have the same slope on of pws v/s log st graph

some we expressed the equation as

.. m is undependent of units used in x (logst) - st can be explosed in any units.

2.8)	Ott-hus)	pms (- pria)	totat
_	0	709	
	1.87	3,169	151.10
	2-95	3,508	101.24
	3.94	3,672	76.05
	4.92	3772	61-10
	5.91	3873	51.03
	7.88	3963	38.52
	9.86	4026	30.99
	14.8	4133	20-98
	19-7	4138	16.01
	24.6	4245	13.02
	29.6	4279	10.99
	34.5	4306	9.57
	39.4	4327	8-50
	44.4	4343	7.66
	49-3	4356	6-99
	59-1	4 375	6.

tp= 12173 STB x 24 WU


=) tp= 295.7 hrs

Appreflow ceased distorting the buildup test data as uson as the ETR ended (because well wasn't idomaged and the only distortion occurs due to afterflow)

from the graph, ETR ends at total = 37-5

- Afterflow coases at mech 4. Weekly.com

Scanned by CamScanner

ath stoods at 8.01 hus (shown in the graph)

To defermine ky we use MTR

$$6 = 1-151 \left[\frac{\text{Pihi} - \text{PWf}}{\text{m}} - \log \frac{k}{\sqrt{\text{actr}_{w}^{2}}} + 3.23 \right]$$

$$= 1-151 \left[\frac{3466. - 709}{575} - \log \left(\frac{24.71}{0.14 \times 0.55 \times 16 \times 10^{-6} \times 0.5^{2}} \right) + 3.23 \right]$$

Flow efficiency, E

$$E = \frac{p^{*} - pwf - (dp)_{S}}{p^{*} - pwf}$$

$$= \frac{4850 - 709 - 69.22}{4850 - 709}$$

Near a single fault, the buildup test aquation is given as PWS = 11-325-2 9,84 log [tp+At]

For ideal buildup test, the equation is

PWS = pi - 162-6 q Bu log [to + 2)

we can see that due to fault, the slope doubled. for infinite shut in time, totat = L

pws = pi (un either case)

So, extrapolating LTR to infinite what in time gives the original suscervoir pussure

slope of MTR = 66 psi/cycle.

P= 3171 psi Pinu= 2745 psi · PWF = 2486 psi

Formation permeability, k= qg 4171 (1657)

= 9.20 md

Sq + Sw = 1+0 =) Sg; = 1-Sw = 0.67

(ct = 5-11×10-4 Psi4)

Permeabilities of each phase

kw = 162.69w Bwun

= 32.45 md

= 3.40 md

kg = 162.6 (98 - 90 Rs) Byry

mhr

= 1-17 md

Total flow reate, gree

que = 9080 + (98 - 90 Rs) Bg + 9 w Bw = 964.19 RB/D

.. Total Mobility, 7+ = 162-6 qrt

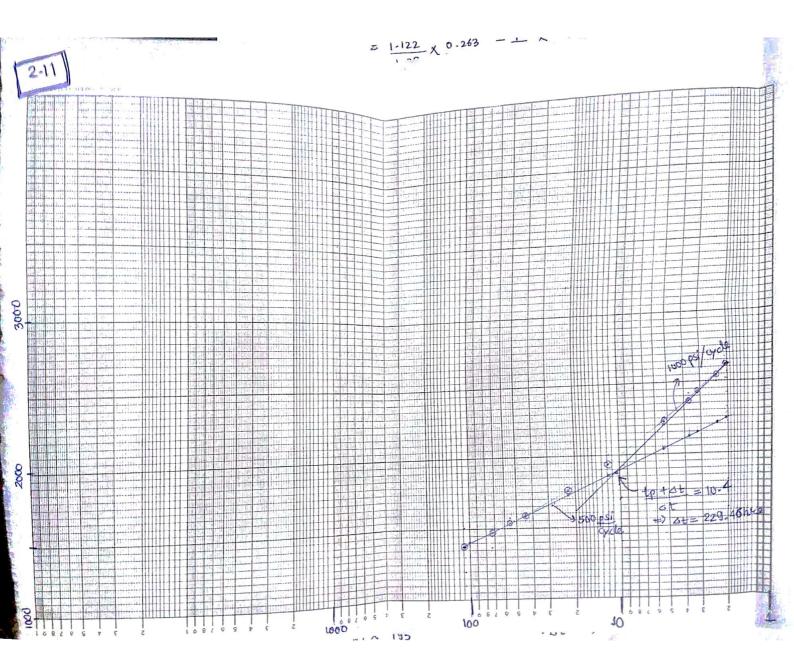
=) A+= 80.52 md/co

$$c_0 = \frac{Bg}{be} \frac{dR_S}{dp} - \frac{1}{be} \frac{dB_0}{dp}$$

$$= \frac{1-122}{1\cdot 28} \times \frac{0.263}{1000} - \frac{1}{1\cdot 28} \times \frac{0.248 \times 10^{-3}}{1000}$$

$$= 1.151 \left(\frac{P_{1}m - P_{wf}}{m} - log \left(\frac{A_{b}}{\phi (+ F_{w})} + 3.23 \right) \right)$$

$$= 1.15) \left(\frac{1744 - 1561}{59} - log \left(\frac{80-52}{0.18 \times 6.85 \times 10^{-5} \times 0.3^{24}} \right) + 3.23 \right)$$


2·11 PMT	PMT	St	pws	totat st
-	-	20	1373	2 108.87
	-	30	1467	72.9
	-	40	1533	54-93
	-	50	1585	44.14
27	1725	100	1752	22.57
65	1885	200	1940	P 11-70
185	2040	500	2225	5.31
250	2110	800	2360	3.69
	2150	1000	2434	4-46
284	2205	1500	2545	2.43
340 371	2245	2000	2616	2.07

$$K = 162.6 g Ru$$

$$Mh$$

$$K = 87 md$$

=) - Fi
$$\left(\frac{-3792 \phi \mu (t | L^2)}{\text{kot}}\right)$$
 = 0,124 =) $\frac{-3792 \phi \mu (t | L^2)}{\text{kot}}$ = -1,36 =) $\frac{-3792 \phi \mu (t | L^2)}{\text{kot}}$ = -1,36 =) $\frac{-3792 \phi \mu (t | L^2)}{\text{kot}}$

2.12, Gira, tp = 10 days = 2410 his (2) For infinite acting surrowing, Pws = P: - 162.69Bu Ly (total). = 3000 - 25.72 la (++06) (For S = 1)

X B	(har)	(to tat)	Pw. delle	
	9	-	1	- Granding
	0.1	2401	2901	
	1,0	241	2933.7	
r.	10	25	2964.05	
* 3		-		,
	C			

The Pow v/s log (to tot) plot

We have; 91 = (* Ot) 2

(At (has)	9; (ft)
6.1	40.6
1.0	123.4
100	406

2.13, GM:- P= 4411 psi, A = 6,97×10 49.1 & tops = Ope C. A (ton) per = du GA = 183 hu. Using tops Instead of to (pps + Dt) 06(hu) Plus 23.88 8 4354 12 16.25 4366 12.44 4376 10.15 4382 24 8.63 4388 From the graph, slope of MTR = 63 psi/cycle And the p value in this case = pt 4410 pri9 (P) =p* Thus, po value nemains the same in bothe cases