Determination of Heat Transfer Co-efficient in a Fluidized Bed

• Objective:

Investigation of the effect of

- a) Superficial Velocity
- b) Depth of Immersion

On the surface heat transfer co-efficient for a hot surface in an Air Fluidized Bed

• Preparation:

Ensure that the Voltmeter, Ammeter and Manometers have been zeroed.

Calibration of Orifice for Higher Flow Rates

- i) Ensure that the manometers are correctly filled and zeroed.
- ii) Turn on the compressed air supply and with the control valve set the airflow to 1.5litre per sec on the variable area meter.
- iii) Note the orifice differential pressure (x cm) indicated the right-hand manometer.

Calibration: Since air flow is proportional to \sqrt{x} , $k = \frac{1.5}{\sqrt{x}}$

Now, determine the higher flow rates from the equation $Q_m = k\sqrt{x}$

• Procedure:

Set the heater to a convenient height above the distributor (say 4 cm).

Turn the airflow to a high value and allow the bed to mix thoroughly for two or three minutes.

Adjust the variable transformer until the desired heater surface temperature (t_1) is obtained (about 160° C is suitable).

Allow conditions to stabilize, then note

i)	Heater surface temperature	t_1
----	----------------------------	-------

vi) Air flow rate (or orifice differential)

Reduce the airflow, reset the variable transformer to obtain the desired value of t_1 then repeat the observations.

Repeat in convenient steps until the air control valve is closed.

Calculation of heat transfer coefficient (h) at steady state

Temperature correction at the Bed $\left(Q_{\rm h}\!=\!Q_{\rm m}\frac{t_2}{t_3}\right)$

$$VI = A_s h(t_1 - t_2)$$

$$h = \frac{VI}{A_s(t_1 - t_2)}$$

Where,

V = Heater e.m.f (Volt)

I = Heater Current (Amp.)

 A_s (Surface area of the Heater) = 1.6 x 10^{-3} m²

Bed Data:

Bed Material: Fused Alumina Grit (Al₂O₃)

Mean Particle size = $250 \, \mu m$

Density of particle = 3770 kg m⁻³

Cross sectional area (S_b) = 8.66 x 10⁻³ m²

Mass of particle = 1.3 kg

Bed Chamber:

Nominal Dia. = 105 mm

Nominal length = 220 mm

Density of air:

1.2 kg m⁻³

Heating element:

Dia. = 12.7 mm

Long = 37 mm

Surface area 16 cm²

OBSERVATION AND RESULT SHEET

			(cm)	above Distributor	Height of Heater
			(cm H ₂ O)	or (x)	f Orifice Differential
\$			(lit/s)	$\left(Q_{m} = k\sqrt{\chi}\right)$	
			(°C)	Temperature (t_1)	Heater Surface
			(°C)	(t ₂)	Bed Temperature
			(°C)	(t ₃)	Air Inlet Temperature
			(volt)	(v)	Heater e.m.f
			(amp)	(<u>)</u>	Heater Current
			(lit/s)	$\left(Q_b = Q_m \frac{t_2}{t_3}\right)$	Corrected Air Flow Rate
			(m/s)	$\left(V_{\text{sup}} = \frac{10^{-2} Q_b}{S_b}\right)$	Superficial Velocity
			(KW/m ² .K)		Heat Transfer